Коррозионное и электрохимическое поведение меди.
Периодическая система / Коррозия меди в 5М изопропанольных растворах НС1 / Коррозионное и электрохимическое поведение меди.
Страница 2

Уменьшение экранирования поверхности электрода происходит при интенсивном перемешивании, снижение концентрации Fe3+ - ионов и повышение концентрации С1- -ионов, которые, по-видимому, облегчают растворение осадка CuC1тв, переводя в комплексные соединения типа CuC1, CuC1, Cu2C1.

В средах на основе CuC12 и FeC13 растворение происходит по реакциям:

Cu + CuC12 ® 2CuC1 (13)

Cu + FeC13 ® CuC1 + FeC12 (14),

протекающим по электрохимическому механизму, т.е., например, как совокупность реакций:

Сu + C1- ®CuC1 + e (15)

CuC12 + ®C1- + CuC1 (16)

Первично образующаяся пленка СuС1, наблюдаемая визуально на поверхности меди, при ее травлении растворяется с образованием комплексных ионов CuC1, CuC1, которые в свою очередь могут окисляться кислородом воздуха до меди (II).

Электрохимическое поведение меди комплексов Сu (I) в расплаве эквимолярной смеси NaF-KC1 [[vii]]. Установлено, что процесс разряда комплексов Сu (I) до металла протекает обратимо. Определены коэффициенты диффузии Сu (I) и условные стандартные потенциалы j Сu+ /Cu и j Сu2+/Cu+. Показано, что при наличии большого избытка анионов фтора к меди (I) в расплаве происходит стабилизация двухвалентного состояния меди, а разряд комплексов Cu (II) протекает в одну двухэлектронную реакцию. В отсутствие же большого избытка F - образующиеся хлоридно-фторидные комплексы восстанавливаются через две одноэлектронные стадии.

При изучении электролиза растворов трехводного нитрата меди Сu(NO3)2.3H2O в диметилсульфоксиде (ДМСО) с медными анодами [[viii]] было обращено внимание на чрезвычайно высокий анодный выход по току в расчете на ионы меди (II). Влияние плотности тока (Х1) и температуры (Х2) на анодный выход по току (ВТА) изучали методом планирования эксперимента (Бокса-Уильсона). Концентрацию соли в растворе 0,1М сохраняли постоянной. В качестве основного уровня были приняты плотность тока 6 мА/см2 и температура 55 0С.

На основании проведенных экспериментов получено параметрическое уравнение (17). Отметим прежде всего высокое значение первого коэффициента уравнения регрессии:

ВТА = 188,58 - 0,32Х1 + 0,80Х2 - 0,33Х1Х2

Судя по значениям других коэффициентов, большее влияние на исследуемый процесс оказывает температура. Величина выхода по току, рассчитываемая по (17), будет иметь разумные значения, если анодное окисление меди в диметилсульфоксидном растворе описывать уравнением

Сu - e ® Cu+ (18)

Возможно, этому благоприятствует способность молекул ДМСО адсорбироваться преимущественно в области положительных зарядов поверхности металла и прочно сольватировать ионы меди (I), взаимодействуя с молекулами воды, вносимой в электролит в составе соли, по реакции:

Cu+ + H2O ® CuOH + H+ (19),

2Cu+ + H2O ® Cu2O + 2H+ (20),

в результате чего образуются в растворе ярко окрашенные взвеси гидроксида желтого цвета и оксида красного цвета, хорошо наблюдаемые в анодном пространстве визуально.

Известны публикации по изучению анодного растворения меди в ацетонитриле [[ix]]. Температурно-кинетическим методом и методом вращающегося дискового электрода установлено, что при содержании в растворе 20 объемных процентов воды процесс анодного растворения меди в ацетонитрильных растворах Сu(NO3)2 лимитируется подводом окислителя в зону реакции. С увеличением концентрации воды процесс переходит в область смешанной кинетики и наблюдается уменьшение скорости травления вследствие изменения лимитирующих стадий сопряженных реакций растворения меди. Это связано с тем, что по сравнению с водными растворами, ионы Сu+ в ацетонитриле обладают более высокой энергией сольватации, что обусловливает их стабилизацию. Увеличение содержания воды приводит к разрушению сольватов Cu+ с ацетонитрилом, дестабилизации ионов Сu+, в результате чего процесс травления осложняется.

Коррозия меди в метанольном, н-пропанольном и водно-метанольном растворах Н2SO4, насыщенных кислородом, исследована в [[x]]. Показано, что растворение протекает по каталитическому механизму так же, как и в водном растворе, при котором кислород восстанавливается в химической реакции ионами Cu+, а медь растворяется за счет сопряженных реакций. Опыты проводились с медью, осажденной на платине, при перемешивании раствора, с концентрацией кислоты (Н2SO4) 0,5 моль/л при t=25 0C.

Страницы: 1 2 3 4 5

Смотрите также

Радон (Radonum), Rn
Радон - радиоактивный химический элемент VIII группы периодической системы Менделеева; атомный номер 86, относится к инертным газам. Три a-радиоактивных изотопа Р. встречаются в природе как члены есте ...

Ксенон (Xenonum), Xe
Ксенон - химический элемент VIII группы периодической системы Д. И. Менделеева, относится к инертным газам; ат. н. 54, ат. м. 131,30. На Земле К. присутствует главным образом в атмосфере. Атмосферный ...

Теоретическое изучение возможности изомеризации карбенов в четырех- или шестичленные гетероциклы
...