Коррозионное и электрохимическое поведение меди.
Периодическая система / Коррозия меди в 5М изопропанольных растворах НС1 / Коррозионное и электрохимическое поведение меди.
Страница 1

В атмосферных условиях в отличие от многих других металлов, медь не подвергается коррозии, так как на ее поверхности образуется тонкий ровный слой (пленка) продуктов коррозии, не содержащая никаких агрессивных соединений, способных при каких-либо условиях разрушать металл. Коррозия меди в атмосферных условиях - процесс самопроизвольно затухающий, так как продукты коррозии защищают поверхность металла от внешней среды.

В воде и нейтральных растворах солей медь обладает достаточной устойчивостью, которая заметно снижается при доступе кислорода и окислителей. В морской воде, аэрируемой при малой скорости движения, медь характеризуется небольшим равномерным растворением (порядка 0,05 мм/год). При высоких скоростях течения жидкости, а также ударах струи скорость коррозии меди сильно повышается [[i]].

Имеются данные о влиянии pH среды на депассивацию меди [[ii]] в хлоридсодержащих боратных буферных растворах. Установлено, что всем исследованном интервале рН при анодной поляризации медь переходит в пассивное состояние. При увеличении рН боратного буфера стационарный потенциал, потенциал пассивации и плотность тока пассивации уменьшается, т.к. изменяется структура, толщина и состав оксидной пленки на меди. В среде, близкой к нейтральной пассивирующая пленка состоит из оксидов Cu (I) и Cu (II), а в щелочной среде - в основном из оксида меди (I) и очень тонкой пленки оксида меди (II). В последнем случае толщина пленки меньше, а пористость больше. При увеличении рН в хлоридсодержащих боратных буферах потенциал питтиногообразования снижается (разблагораживается), что связано как с изменением происходящими в оксидной пленке, так и с тем, что начальные стадии депассивации меди протекают через образование смешанных гидроксокомплексов. При постоянном значении рН потенциал питтингообразования не зависит от концентрации NaC1. Предложена схема механизма начальных стадий инициирования питтингообразования меди в хлоридсодержащих боратных растворах, согласно которой лимитирующей стадией является диссоциация гидроксида Cu(ОН)2, а нуклеофильное замещение пассивирующего лиганда в поверхностном комплексе анионом-активатором протекает по диссоциативному механизму.

В [[iii]] приведены данные по коррозионному поведению меди М1 в 3% растворе хлорида натрия в сравнении с естественной морской водой, совокупность которых позволила авторам сделать вывод, что основным анодным процессом при коррозии меди в 3 % растворе NaC1 и морской воде является ее окисление в закись с последующим химическим растворением последней. Контролирующей стадией является отвод ионных форм меди (Сu+, CuCl2-, CuCl32-) в электролит.

В хлоридных растворах с рН=0,5, содержащих ионы двухвалентной меди, по данным [[iv]] при катодной поляризации наблюдается компонента скорости растворения, независимая от потенциала за счет процесса репропорционирования:

Cu + Cu2+ ® 2Cu+ (10)

Медь весьма склонна к комплексообразованию. Например, в нейтральных хлоридных средах эффективный заряд переходящих в раствор ионов (mэфф) меди равен 1±0,01 [[v]]. Предложен следующий стадийный механизм растворения меди c двумя возможными маршрутами ионизации :

а) Сu + nCl- ® CuCl + е (11)

б) Cu ® Cu+ + e (12)

_

Cu+ + nCl- ® CuCl

Широкое применение в различных отраслях химической промышленности нашло химическое и электрохимическое травление меди. В медно-аммиачных травильных растворах, содержащих NH3 и NH4C1 [[vi]], установлена следующая последовательность формирования пассивирующих слоев с ростом потенциала: СuC12, Cu2O, CuO (при определенных условиях), CuC12.3Cu(OH)2 и CuC12 . 2NH4C1.H2O, либо их смесь. Различными электрохимическими и рентгенографическими методами было показано, что интенсивное вращение электрода удаляет лишь рыхлую часть продуктов реакции, оставляя пассивный слой. В любых условиях растворение идет через пассивную пленку.

Изучение травления в растворах FeC12 показало, что химическое растворение меди протекает наряду с электрохимическим, основными продуктами которых являются CuC1 и Сu2О. Общая скорость ионизации металла определяется пассивированием поверхности меди малорастворимыми продуктами. Пассивирование для железо-хлоридных растворов тем глубже, чем позже оно наступает. Причиной является уплотнение слоя СuС1 в результате уменьшения количества дефектов в структуре, а также тот факт, что по сравнению с CuC12 в железо-хлоридных растворах той же концентрации количество свободных С1- ионов, не входящих в комплексы, больше, и, следовательно, лучше условия для пассивирования. Установлено, что образующийся при травлении меди пассивирующий слой CuС1 обладает полупроводниковыми свойствами и оказывает существенное влияние на протекание анодного растворения металла. При малых концентрациях FeC13 главную роль играет толщина поверхностного слоя, а при высоких концентрациях FeC13 - диффузия ионов Fe3+ в твердую фазу.

Страницы: 1 2 3 4 5

Смотрите также

Уран
...

Коллоидные системы в организме и их функции
...

Технологический процесс получения водно-дисперсионных красок для внутренних работ
...