Углерод (Carboneum), СХимические элементы / Углерод (Carboneum), С
Углерод - химический элемент IV группы периодической системы Менделеева, атомный номер 6, атомная масса 12,011. Известны два стабильных изотопа: 12C (98,892%) и 13C (1,108%). Из радиоактивных изотопов наиболее важен 14C с периодом полураспада (Т EQ f (1;2) = 5,6×103 лет). Небольшие количества 14C (около 2×10-10% по массе) постоянно образуются в верхних слоях атмосферы при действии нейтронов космического излучения на изотоп азота 14N. По удельной активности изотопа 14C в остатках биогенного происхождения определяют их возраст. 14C широко используется в качестве изотопного индикатора.
Историческая справка. У. известен с глубокой древности. Древесный уголь служил для восстановления металлов из руд, алмаз - как драгоценный камень. Значительно позднее стали применять графит для изготовления тиглей и карандашей.
В 1778 К. Шееле, нагревая графит с селитрой, обнаружил, что при этом, как и при нагревании угля с селитрой, выделяется углекислый газ. Химический состав алмаза был установлен в результате опытов А. Лавуазье (1772) по изучению горения алмаза на воздухе и исследований С. Теннанта (1797), доказавшего, что одинаковые количества алмаза и угля дают при окислении равные количества углекислого газа. У. был признан химическим элементом в 1789 Лавуазье. Латинское название carboneum У. получил от carbo - уголь.
Распространение в природе. Среднее содержание У. в земной коре 2,3×10-2% по массе (1×10-2 в ультраосновных, 1×10-2 - в основных, 2×10-2 - в средних, 3×10-2 - в кислых горных породах). У. накапливается в верхней части земной коры (биосфере): в живом веществе 18% У., древесине 50%, каменном угле 80%, нефти 85%, антраците 96%. Значительная часть У. литосферы сосредоточена в известняках и доломитах.
Число собственных минералов У. - 112; исключительно велико число органических соединений У. - углеводородов и их производных.
С накоплением У. в земной коре связано накопление и многих др. элементов, сорбируемых органическим веществом и осаждающихся в виде нерастворимых карбонатов, и т.д. Большую геохимическую роль в земной коре играют CO2 и угольная кислота. Огромное количество CO2 выделяется при вулканизме - в истории Земли это был основной источник У. для биосферы.
По сравнению со средним содержанием в земной коре человечество в исключительно больших количествах извлекает У. из недр (уголь, нефть, природный газ), так как эти ископаемые - основной источник энергии.
Огромное геохимическое значение имеет круговорот У. (см. ниже раздел Углерод в организме и ст. Круговорот веществ).
У. широко распространён также в космосе; на Солнце он занимает 4-е место после водорода, гелия и кислорода.
Физико и химические свойства. Известны четыре кристаллические модификации У.: графит, алмаз, карбин и лонсдейлит. Графит - серо-чёрная, непрозрачная, жирная на ощупь, чешуйчатая, очень мягкая масса с металлическим блеском. Построен из кристаллов гексагональной структуры: а=2,462Å, c=6,701Å. При комнатной температуре и нормальном давлении (0,1 Мн/м2, или 1 кгс/см2)графит термодинамически стабилен. Алмаз - очень твёрдое, кристаллическое вещество. Кристаллы имеют кубическую гранецентрированную решётку: а = 3,560 Å. При комнатной температуре и нормальном давлении алмаз метастабилен (подробно о структуре и свойствах алмаза и графита см. в соответствующих статьях). Заметное превращение алмаза в графит наблюдается при температурах выше 1400 °C в вакууме или в инертной атмосфере. При атмосферном давлении и температуре около 3700 °C графит возгоняется. Жидкий У. может быть получен при давлениях выше 10,5 Мн/м2 (105 кгс/см2) и температурах выше 3700 °C. Для твёрдого У. (кокс, сажа, древесный уголь) характерно также состояние с неупорядоченной структурой - так называемый "аморфный" У., который не представляет собой самостоятельной модификации; в основе его строения лежит структура мелкокристаллического графита. Нагревание некоторых разновидностей "аморфного" У. выше 1500-1600 °C без доступа воздуха вызывает их превращение в графит. Физические свойства "аморфного" У. очень сильно зависят от дисперсности частиц и наличия примесей. Плотность, теплоёмкость, теплопроводность и электропроводность "аморфного" У. всегда выше, чем графита. Карбин получен искусственно. Он представляет собой мелкокристаллический порошок чёрного цвета (плотность 1,9-2 г/см3). Построен из длинных цепочек атомов С, уложенных параллельно друг другу. Лонсдейлит найден в метеоритах и получен искусственно; его структура и свойства окончательно не установлены.
Конфигурация внешней электронной оболочки атома У. 2s22p2. Для У. характерно образование четырёх ковалентных связей, обусловленное возбуждением внешней электронной оболочки до состояния 2sp3. Поэтому У. способен в равной степени как притягивать, так и отдавать электроны. Химическая связь может осуществляться за счёт sp3-, sp2- и sp-гибридных орбиталей, которым соответствуют координационные числа 4, 3 и 2. Число валентных электронов У. и число валентных орбиталей одинаково; это одна из причин устойчивости связи между атомами У.
Уникальная способность атомов У. соединяться между собой с образованием прочных и длинных цепей и циклов привела к возникновению громадного числа разнообразных соединений У., изучаемых органической химией.
В соединениях У. проявляет степени окисления -4; +2; +4. Атомный радиус 0,77Å, ковалентные радиусы 0,77Å, 0,67Å, 0,60Å соответственно в одинарной, двойной и тройной связях; ионный радиус C4- 2,60Å, C4+ 0,20Å. При обычных условиях У. химически инертен, при высоких температурах он соединяется со многими элементами, проявляя сильные восстановительные свойства. Химическая активность убывает в ряду: "аморфный" У., графит, алмаз; взаимодействие с кислородом воздуха (горение) происходит соответственно при температурах выше 300-500 °C, 600-700 °C и 850-1000 °C с образованием двуокиси углерода CO2 и окиси углерода CO.
CO2 растворяется в воде с образованием угольной кислоты. В 1906 О. Дильс получил недоокись У. C3O2. Все формы У. устойчивы к щелочам и кислотам и медленно окисляются только очень сильными окислителями (хромовая смесь, смесь концентрированных HNO3 и KClO3 и др.). "Аморфный" У. реагирует с фтором при комнатной температуре, графит и алмаз - при нагревании. Непосредственное соединение У. с хлором происходит в электрической дуге; с бромом и иодом У. не реагирует, поэтому многочисленные углерода галогениды синтезируют косвенным путём. Из оксигалогенидов общей формулы COX2 (где Х - галоген) наиболее известна хлорокись COCl2 (фосген). Водород с алмазом не взаимодействует; с графитом и "аморфным" У. реагирует при высоких температурах в присутствии катализаторов (Ni, Pt): при 600-1000 °C образуется в основном метан CH4, при 1500- 2000 °C - ацетилен C2H2, в продуктах могут присутствовать также др. углеводороды, например этан C2H6, бензол C6H6. Взаимодействие серы с "аморфным" У. и графитом начинается при 700-800 °C, с алмазом при 900-1000 °C; во всех случаях образуется сероуглерод CS2. Др. соединения У., содержащие серу (тиоокись CS, тионедоокись C3S2, сероокись COS и тиофосген CSCl2), получают косвенным путём. При взаимодействии CS2 с сульфидами металлов образуются тиокарбонаты - соли слабой тиоугольной кислоты. Взаимодействие У. с азотом с получением циана (CN)2 происходит при пропускании электрического разряда между угольными электродами в атмосфере азота. Среди азотсодержащих соединений У. важное практическое значение имеют цианистый водород HCN (см. Синильная кислота) и его многочисленные производные: цианиды, гало-генцианы, нитрилы и др. При температурах выше 1000 °C У. взаимодействует со многими металлами, давая карбиды. Все формы У. при нагревании восстанавливают окислы металлов с образованием свободных металлов (Zn, Cd, Cu, Pb и др.) или карбидов (CaC2, Mo2C, WO, TaC и др.). У. реагирует при температурах выше 600- 800 °C с водяным паром и углекислым газом (см. Газификация топлив). Отличительной особенностью графита является способность при умеренном нагревании до 300-400 °C взаимодействовать со щелочными металлами и галогенидами с образованием соединений включения типа C8Me, C24Me, C8X (где Х - галоген, Me - металл). Известны соединения включения графита с HNO3, H2SO4, FeCl3 и др. (например, бисульфат графита C24SO4H2). Все формы У. нерастворимы в обычных неорганических и органических растворителях, но растворяются в некоторых расплавленных металлах (например, Fe, Ni, Co).
Народнохозяйственное значение У. определяется тем, что свыше 90% всех первичных источников потребляемой в мире энергии приходится на органическое топливо, главенствующая роль которого сохранится и на ближайшие десятилетия, несмотря на интенсивное развитие ядерной энергетики. Только около 10% добываемого топлива используется в качестве сырья для основного органического синтеза и нефтехимического синтеза, для получения пластических масс и др.
О получении и применении У. и его соединений см. также Алмаз, Графит, Кокс, Сажа, Углеродистые огнеупоры, Углерода двуокись, Углерода окись, Карбонаты.
Смотрите также
Извлечение никеля из полировальных ванн для никелирования
При нанесении
декоративных хромовых покрытий на деталь для защиты от коррозии сначала наносят
слой никеля. Для получения гладкой и блестящей поверхности, необходимой для
хромирования, нанос ...