Модели задачи пространственного вращения
Периодическая система / Модели задачи пространственного вращения
Страница 1

Рассмотрим две различные физически возможные ситуации, связанные с вращением вокруг некоей фиксированной точки – центра. В данном разделе мы, не стремясь к излишней строгости изложения, ограничимся физическими аналогиями и подходом к анализу криволинейного движения, заимствованным из классической теоретической механики.

1. В первом случае представим себе вращательное движение двухатомной молекулы вокруг её центра масс. Пренебрегая относительно небольшими колебательными деформациями химической связи, можно считать постоянным межъядерное расстояние R, а соответственно, и радиусы сфер, по которым перемещается каждый из атомов вращающейся молекулы с массами и . Такая модель называется жёстким ротатором и может рассматриваться как пример чистого вращения (рис. 1)

Рис. 1. Жесткий ротатор.

Ему отвечает кинетическая энергия

(1)

где L– момент импульса, I – момент инерции, а – приведенная масса,

В свободном вращательном движении потенциальная энергия отсутствует, и оператор кинетической энергии представляет собой одновременно оператор полной энергии. Он запишется так:

где R=const (2)

Напомним читателю, что выражение оператора момента импульса I дано в разделе 2.2. Следует ожидать, что в сферических координатах оператор вр должен зависеть только от угловых переменных, но не от радиуса . Это легко проверить с помощью анализа размерности.

2. Второй случай сложнее и полнее. Он имеет место при движении одного электрона в поле ядра атома водорода, водородоподобном ионе или при взаимном вращении частиц в электрон-позитронной системе, известной как атом позитрония. Такое движение называется центральным, а сама задача Кеплеровой.

Электрон невозможно зафиксировать на сфере постоянного радиуса – это запрещено принципом неопределенности. При движении электрона как бы образуется пространственное облако. Тем не менее, можно обратиться к аналогии с классической механикой, которая позволяет в любом криволинейном движении выделить нормальную (радиальную) и тангенциальную (касательную) компоненты. Тангенциальная составляющая кинетической энергии соответствует чистому вращению – перемещению по сфере – и связана с моментом импульса формулой (1).

Движение электрона, порождающее облако с вероятностным распределением плотности, можно условно представить как совокупность чистых вращений на концентрических сферах с фиксированными радиусами и радиальных перемещений между этими сферами. В таком случае чисто вращательное слагаемое в составе оператора кинетической энергии также описывается формулой (2) но при этом момент инерции является переменной величиной из-за меняющегося радиуса

(3)

где – масса электрона, а .

Присутствие радиального слагаемого в этом случае заставляет представить оператор кинетической энергии в виде суммы

(4)

3. В силу того, что оператор кинетической энергии частицы отличается от лапласиана только множителем (см. уравнение 2.15), домножив на него формулу (4.46), получим

(5)

Сравнивая формулы (4.50) и (4.51), приходим к фундаментальному соотношению

, (6)

т.е. оператор квадрата момента импульса совпадает с оператором Лежандра с точностью до постоянного множителя . Заметим, что размерность собственных значений оператора совпадает с размерностью постоянной Планка .

Страницы: 1 2 3 4

Смотрите также

Соединения азота
Анализ содержания экспериментальной части программы по данной теме свидетельствует, что большинство продуктов реакций являются минеральными удобрениями. Утилизировать отходы можно по следующ ...

Палладий (Palladium), Pd
Открыт английским химиком Вильямом Волластоном (William Hyde Wollaston) в 1803 году. Волластон выделил его из платиновой руды привезённой из Южной Америки. Для выделения элемента Волластон растворил ...

История открытия элементов
...