Экспериментальные результаты и их обсуждение.
Периодическая система / Коррозия меди в 5М изопропанольных растворах НС1 / Экспериментальные результаты и их обсуждение.
Страница 3

а, следовательно, коррозия протекает не на предельном токе и не связана с транспортными ограничениями окислителя-деполяризатора к поверхности электрода.

Порядок общей скорости коррозии по СuС12, представляющий собой тангенс угла наклона соответствующей прямой равен 0,12; iэх и iпред также возрастают с порядками 0,12 и 0,20 соответственно (таб. 2). Поскольку коррозия меди в солянокислых изопропанольных растворах НС1 с добавками Cu2+, с одной стороны, вызвана, кислотностью среды, а с другой - влиянием CuC12, то общая скорость коррозии, очевидно, будет представлять собой сумму:

iкор,общ = i0 + iCu2+, (43)

где i0 - скорость коррозии меди, обусловленная кислотностью среды, а iCu2+ - влиянием ионов Cu2+ на растворение меди в изопропанольных средах.

В свою очередь, iCu2+ складывается из плотности тока электрохимической коррозии (iэх,Cu2+) и плотности тока неэлектрохимической составляющей (iх):

iCu2+ = iэх,Cu2+ + iх. (44)

Порядок скорости коррозии меди, обусловленной введением ионов CuC12 в раствор (¶ lg(iкор,общ - i0)/¶ lgCCu2+) заметно повышается и составляет 0,5 (таб. 2, рис. 2).

Оценим влияние ионов Cu2+ на анодную реакцию ионизации металла. Добавки хлорной меди в 5М у.б. изопропанольный раствор НС1 повышает ионную силу раствора (J).

J = 1/2 , (45)

где Сi - концентрация иона; Zi -заряд иона.

Вели чина J в нашем случае представляет собой сумму:

J = 1/2 (CH+ + CC1- + 4CCu2+), (46)

где CH+ = CHC1; СCu2+ = ; СC1- = CHC1 + 2

Рис.3.а) Анодные поляризационные кривые на меди в растворах состава 5М НС1 + х М СuС12 в у.б изопропиловом спирте. Неподвижный электрод. Комнатная температура. Воздух.

х: 1-10-4; 2-10-3; 3-5.10-2; 4-10-1.

б) Нахождение порядка реакции анодной ионизации по данным рис. 3а.

Подставляя концентрации ионов в уравнение (46) получим:

J = CHC1 + 3. (47)

Так как ионная сила раствора одно-одновалентных электролитов равна концентрации растворенного вещества, то изменение ее за счет введения соли будет составлять величину D J:

D J = J-J0, (48)

где J0 - ионная сила фонового раствора.

Поскольку концентрация фонового электролита достаточно высока (5 моль/л НС1), то введение соли в концентрации 10-4 -10-1 моль/л весьма незначительно повышает величину J, а , следовательно этим изменением можно пренебречь (таб. 3). Последнее допущение дает возможность считать постоянными коэфициенты активности, а, следовательно, и активности ионов электролитов согласно первому приближению Дебая-Гюккеля:

lg f± = - A (49)

Таблица 3.

Влияние изученных концентраций

CuС12 на ионную силу раствора

5М НС1 в изопропаноле.

Ошибка измерения ионной силы раствора

Концентрация CuC12, моль/л

10-4

10-3

10-2

5.10-2

10-1

Абсолютная

D J = J-J0,

3.10-4

3.10-3

3.10-2

1,5.10-1

3.10-1

Относительная

l = ,

6.10-3

6.10-2

0,6

2,9

5,76

Страницы: 1 2 3 4 5 6

Смотрите также

Приложение 1
Конкретные примеры о методах реализации межпредметных связей. 1. Вопросы межпредметного содержания: а) Вспомните (из курса географии) основные месторождения в России: · алмаза · поваре ...

Вискозиметрия в разбавленных растворах полимеров
  Полимеры, при их растворении в растворителе, значительно увеличивают вязкость раствора. Полимеры используются в качестве сгустителей в таких продуктах, как шампуни и мороженое. Этот эффект ...

Соединения азота
Анализ содержания экспериментальной части программы по данной теме свидетельствует, что большинство продуктов реакций являются минеральными удобрениями. Утилизировать отходы можно по следующ ...