Характеры представлений. Определение и свойства характеровМатериалы / Теория симметрии молекул / Характеры представлений. Определение и свойства характеров
Определение 1. След матрицы А=(аij) размера n´n есть сумма ее элементов, стоящих по главной диагонали:
TrA=a11+a22+…+ann (14)
Определение 2. След матрицы Т(g), представляющий элемент g в матричном представлении Т группы G, называется характеристикой элемента g в представлении Т и обозначается cT(g).
Определение 3. Совокупность характеристик всех элементов g группы G, составленных для данного представления Т, называется характером представления Т и записывается как cT. Если Т – матричное представление группы G над полем вещественных или комплексных чисел Р, то характеристика каждого элемента группы является вещественным или комплексным числом и, следовательно, характер есть отображение cT группы G в поле Р, определяемое следующим образом:
cT: G®P: cT(g)=TrT(g).
Свойство 1. Характеры эквивалентных представлений совпадают.
Свойство 2. Характер представления Т группы G постоянен на каждом классе сопряженных элементов: cT(g-1hg)= cT(h), g, hÎG.
Определение 4. Вектор x¹0 из векторного пространства V над числовым полем Р называется собственным вектором линейного оператора , действующего в этом пространстве, если он удовлетворяет соотношению
x=lx, где l - число, которое называется собственным значением (характеристическим числом) линейного оператора.
Условие того, что вектор х – собственный вектор записывается в виде матричного уравнения
(А - lI)х = 0, (15)
где х – вектор-столбец с неизвестными координатами x1, x2, …, xn. Условием существования ненулевого решения системы (15) является равенство нулю его определителя:
|A - lI| = 0. (16)
Это уравнение степени n относительно l называется характеристическим или вековым уравнением матрицы А линейного оператора, а его корни называются собственными значениями матрицы А, они являются собственными значениями оператора .
Свойство 3. Если l1, l2, …, ln – собственные значения линейного оператора , то cT(g)=TrT(g)= l1+l2+ …+ln.
Так как здесь рассматриваем конечные группы, то имеет место следующее свойство.
Свойство 4. Если Т – представление группы G над полем Р, то для каждого элемента gÎG значение cT(g) равно сумме корней из единицы степени, равной порядку элемента g.
Свойство 5. Если Т – представление группы G, то для каждого gÎG справедливо равенство cT(g-1)= cT(g).
Свойство 6. Если и
- характеры неприводимых представлений группы G, то
(17)
Равенство (17) называется соотношением ортогональности, для характеров, неприводимых представлений группы G.
Свойство 7. (второе соотношение ортогональности) Пусть T1, T2, …, Tm – все неэквивалентные представления группы G, K(a), K(b) – классы элементов группы G, сопряженных соответственно с a и b. Тогда
(18)
где |G| - число элементов в группе G; |K(b)| - число элементов в классе сопряженных элементов K(b); - характеры неприводимых представлений Ti, i=1, 2, …, m.
Смотрите также
Алюминий (Aluminium), Al
В 1827 г. выдающийся немецкий химик, врач по образованию Фридрих Велер получил никогда и никем не виданный металл. Несколько раньше этот же металл был получен Эрстедом. Вначале Велером металл был выде ...
Золото (Aurum), Au
Во имя обладания золотом велись войны, порабощались государства, сын убивал отца, братья уничтожали сестер, дети - своих матерей. Гибли целые народы, превращались в пустыни плодородные края, потоками ...
Америций (Americium), Am
Америций - искусственно полученный радиоактивный химический элемент, относится к актиноидам, атомный номер 95. Стабильных изотопов не имеет. Синтезирован в конце 1944 - начале 1945 американскими учёны ...