Теория структурообразованияСтатьи / Теория структурообразованияСтраница 2
Результирующая энергия взаимодействия между частицами, находящимися на расстоянии h, определяется уравнением:
Зависимость суммарной потенциальной энергии межчастичного взаимодействия от расстояния между частицами имеет сложный характер.
Общий вид этой зависимости U = f(h) представлен на рисунке 4.1.1.1.
На графике есть три участка:
1) 0 < h < h1•U (h) < 0, между частицами преобладают силы притяжения, наблюдается ближний минимум.
Uотт → const; Uпр → -∞. Происходит коагуляция.
2) h1 < h < h2. U (h) > 0 – между частицами преобладают силы отталкивания. Uотт > |Uпр|.
3) h2 < h < h3. U (h) < 0 – обнаруживается дальний минимум, однако глубина его невелика.
При h = h1, h2, h3 U (h) = 0, т. е. при этих расстояниях между частицами силы притяжения уравновешиваются силами отталкивания.
Таким образом, если частицы сблизятся на расстояние меньше h1, они неизбежно слипнутся, но для этого должен быть преодолён потенциальный барьер ∆Uк. Это возможно при достаточной кинетической энергии частиц, которая среднестатистически близка к произведению κТ.
Рассмотрим взаимодействие двух частиц. Будем одну частицу считать неподвижной, а вторую – приближающейся к ней с энергией, равной κТ.
Если κТ < ∆Umin, частицы останутся на расстоянии hmin и будут связаны между собой через слой дисперсионной среды, т. е. образуют “пару”, но непосредственно не слипаются и не теряют своей седиментационной устойчивости. В таких случаях говорят, что взаимодействие происходит в дальнем минимуме.
Если ∆Umin < κТ << ∆Uк, то частицы при столкновении отлетают друг от друга. Система агрегативно устойчива.
Если κТ < ∆Uк, то происходит медленная коагуляция.
Если κТ > ∆Uк, то происходит быстрая коагуляция.
Так как золь обычно рассматривают при постоянной температуре, кинетическая энергия частиц остаётся постоянной. Следовательно, для коагуляции должен быть уменьшен потенциальный барьер коагуляции ∆Uк.
Обычно для понижения потенциального барьера в систему вводится электролит-коагулянт. Теория ДЛФО даёт возможность вычислить порог быстрой коагуляции СКБ:
,
где А, В – постоянные величины, которые могут быть рассчитаны;
ε – диэлектрическая проницаемость среды;
Z – заряд иона-коагулянта;
ē – заряд электрона.
Из этой формулы видно, что зависимость порога коагуляции от заряда иона-коагулянта, выведенная из теории ДЛФО, согласуется с эмпирическим правилом Шульце-Гарди:
.
Жидкообразные и твердообразные тела. Ньютоновские и неньютовские жидкости. Псевдопластические и дилатантные жидкообразные тела. Уравнение Оствальда-Вейля. Бингамовские и небингамовские твердообразные тела. Тиксотропия и реопексия
Предложенная П.А. Ребиндером классификация структур дисперсных систем помогает связать механические свойства тел с их строением.
В соответствии с реологическими свойствами все реальные тела делят на жидкообразные (предел текучести равен нулю, РТ = 0) и твердообразные (РТ > 0).
Жидкообразные тела классифицируют на ньютоновские и неньютоновские жидкости. Ньютоновские жидкости – это системы, вязкость которых не зависит от напряжения сдвига и является постоянной величиной в соответствии с законом Ньютона. Течение неньютоновских жидкостей не следует закону Ньютона, их вязкость зависит от напряжения сдвига. Неньютоновские жидкости подразделяются на стационарные, реологические свойства которых не меняются во времени, и нестационарные, для которых эти характеристики зависят от времени. Неньютоновские стационарные жидкости подразделяются на псевдопластические и дилатантные (рис. 4.1.2.1 и 4.1.2.2).
Исходя из экспериментальных исследований, графические зависимости напряжения сдвига от скорости деформации в логарифмических координатах часто линейны и различаются только тангенсом угла наклона прямой, поэтому общую зависимость напряжения сдвига Р от скорости деформации g можно выразить в виде степенной функции:
,
где k и n – постоянные, характеризующие данную жидкообразную систему.
Двухпараметрическое уравнение – математическая модель Оствальда-Вейля: ньютоновская вязкость h неньютоновской стационарной жидкости определяется уравнением
.
Смотрите также
Теория растворов
...
Химики создали молекулу, способную удалять из раствора отрицательно заряженные ионы
Химики создали органическую молекулу, способную связывать отрицательно заряженные ионы растворенных веществ. Это позволяет очищать растворы от ионов, например, хлора и фтора.
Агенты (вещества), спос ...
Гафний (Hafnium), Hf
Гафний - химический элемент IV группы периодической системы Менделеева; порядковый номер 72, атомная масса 178, 49; серебристо-белый металл. В состав природного Г. входят 6 стабильных изотопов с массо ...