История аналитической химии
Статьи / Предмет аналитической химии. История и применение / История аналитической химии
Страница 2

Р. Бойль систематически использовал экстракты растений (лакмус, фи­алка и др.) и животных тканей для определения кислотности и щелочности растворов; например, он установил, что в щелочном растворе экстракт фиал­ки становится зеленым. Известное с древних времен свойство экстракта ду­бильных орешков окрашиваться в присутствии железа и меди было дополне­но наблюдением, что интенсивность возникающей при этом окраски связана с содержанием металла в растворе. Известно, что Бойль судил о составе осадков по форме образующихся кристаллов; он проводил фракционную кристаллизацию. Бойль отделил химию от медицины, это был конец эпохи иатрохимии.

Время теории флогистона: в XVIII в. многое было сделано в облас­ти изучения газов. Создателями газового анализа были работавшие примерно в одно время Г. Кавендиш (показал, что вода — сложное вещество), Дж. Пристли, К. Шееле, Дж. Блэк. С их именами связано открытие кислоро­да и водорода, а также много других открытий. Например, шведский ученый К. Шееле получил щавелевую кислоту, которую сам и предложил впервые как реагент на кальций. Одним из ведущих аналитиков XVIII столетия был А. Маргтраф, который начал использовать микроскоп в химическом анализе, ввел новые методы, в том числе способ определения серебра с помощью хлорида.

В качестве курьеза отметим, что венгерский ученый Я. Винтерль опубликовал способ определения флогистона.

Крупнейшим аналитиком XVIII в. был шведский химик Т. Бергман (1735—1784). Он впервые провел различие между качественным и количест­венным анализом, обобщил накопленный к тому времени материал о приме­нении паяльной трубки в анализе. В те времена паяльная трубка была мощ­ным инструментом аналитического исследования; например, с ее помощью был установлен качественный состав многих минералов, открыто немало элементов. Особенно крупной заслугой Бергмана было то, что он установил влияние углерода и фосфора на свойства железа. Точное определение содер­жания углерода в разных образцах железа, полученного с использованием каменного угля, открыло дорогу современной металлургии. Сейчас все зна­ют, чем отличаются, скажем, сталь и чугун. Хотя химический анализ и был известен за две тысячи лет до Бергмана, этот шведский ученый придал ему статус отдельного направления науки — аналитической химии, создал пер­вую схему качественного химического анализа.

Период научной химии: конец XVIII — начало XIX вв. характе­ризовались общеизвестными открытиями А. Л. Лавуазье (кислородная тео­рия горения, закон сохранения вещества, различие между элементами и со­единениями), похоронившими теорию флогистона.

В этот период произошло становление законов стехиометрии — фунда­ментальной базы аналитической химии. У истоков этих исследований стоял немецкий ученый И. В. Рихтер. В студенческие годы на него большое впе­чатление произвели слова его учителя философа Э. Канта о том, что в от­дельных направлениях естественных наук истинной науки столько, сколько в ней математики. Рихтер посвятил свою диссертацию использованию матема­тики в химии. Не будучи в сущности химиком, Рихтер ввел первые количе­ственные уравнения химических реакций, стал использовать термин «стехиометрия», начал определять атомные веса.

Идея о том, что химические соединения имеют определенный, четко устанавливаемый состав (развитая далее Ж. Л. Прустом и особенно Дж. Даль­тоном), встретила возражения французского химика К. Л. Бертолле. Он опубликовал теорию, согласно которой состав химического соединения, об­разуемого двумя элементами, может меняться в любых пределах и соотно­шениях. «Будь эта теория правильна, — пишут историки химии, — она раз­рушила бы всю теоретическую базу количественного анализа того времени».

Закон кратных отношений (Дальтон), шкала атомных весов — все это действительно легло в основу количественного химического анализа.

Знаменитый шведский химик Я. Берцелиус (1779—1848) продолжал ли­нию И. Рихтера, на основе анализа оксидов он определил атомные веса почти всех известных тогда элементов, ввел символы элементов, химические фор­мулы, активно проводил аналитические расчеты на основе правил стехио­метрии. Берцелиус стоял у истоков метрологии анализа. Он оценивал ошиб­ки определений, разработал точные методы взвешивания, ему принадлежит методика определения платиновых металлов. Шведский ученый пытался создать новую схему качественного анализа. При анализе силикатов Берце­лиус применил фтористоводородную кислоту — прием, широко используе­мый и по сей день; использовал возгонку хлоридов для разделения металлов.

Первые руководства по химическому анализу появились еще во времена алхимии. В XVII в. их было уже немало. В 1790 г. в Иене была издана книга И. Геттлинга «Полная химическая пробирная палата», в 1799 г. во Франции — труд Л. Н. Воклена «Руководство испытателя», В. А. Лампадиус в 1801 г. опубликовал «Руководство по химическому анализу минеральных веществ», где появляется термин «аналитическая химия», термин приживается, например, в книге К. Праффа «Руководство по аналитической химии для химиков государственных врачей, аптекарей, сельских хозяев и рудознатцев» (1821).

Страницы: 1 2 3 4 5

Смотрите также

Контрольный синтез Mg(NO3)2 – MgO – MgCl2
Цель работы: Изучить цепочку синтеза  Mg(NO3)2  - MgO - MgCl2, и осуществить ее на практике.  Рассмотреть физико-химические характеристики веществ, участвующих в химических реакциях при син ...

Поливинилпирролидон: его применение и важнейшие характеристики
  Поливинилпирролидон является виниловым полимером. В основном его получают методом радикальной виниловой полимеризации из мономера винилпирролидона. ...

Синтез тиоцианата ртути
Целью данной курсовой работы является изучение способов синтеза тиоцианатов, в частности тиоцианат ртути (ΙΙ). Свойства соединений ртути(II) специфичны, поэтому они интересны для ...