Структурные и кинетические характеристики диметакрилата триэтиленгиколя, адсорбированного на полимерных частицахМатериалы / Структурные и кинетические характеристики диметакрилата триэтиленгиколя, адсорбированного на полимерных частицахСтраница 1
Микрогетерогенная модель процесса полимеризации ОЭА предполагает, что начиная с малых глубин превращения, происходит обособление полимерной микрофазы — выделение стеклообразного, «мертвого» с химической точки зрения полимера [1]. В то же время полимерная микрофаза, являющаяся совокупностью микрочастиц — зерен полимера, существенно влияет на свойства полимеризующейся системы. Согласно той же модели, полимеризационный процесс почти нацело локализуется на периферийных участках зерен.
Формирующийся ОЭА — полимер может быть рассмотрен, как наполненная композиция с полимерными микрочастицами, на которых может происходить адсорбция олигомера. Вследствие влияния поля поверхностных сил свойства олигомера, находящегося в адсорбционном слое, отличаются от его свойств в объеме [ 2].
Цель настоящей работы — изучение особенностей адсорбционного взаимодействия олигомера и полимерной микрофазы и их влияния на реакционную способность метакрильных групп олигомера в радикальной полимеризации.
Исследование проводили на модельной системе диметакрилат триэтиленгликоля (ТГМ-3), нанесенный на частицы (зерна) порошкообразного полимера на основе ТГМ-3. Отличие такой модели от реального полимерного блока заключается в следующем: в отсутствии сращивания полимерных зерен между собой; в том, что толщина периферийного, набухшего в олигомере слоя, по-видимому, ничтожно мала, что является одним из крайних случаев в трактовке модели микрогетерогенности; и наконец в том, что размер частиц порошка постоянен и, возможно, не соответствует размеру зерен при блочной полимеризации. Указанные отличия позволяют выделить и изучить явление адсорбционного взаимодействия олигомера и полимера.
Порошкообразный полимер ТГМ-3 синтезировали по методике [3]. Методом электронной микроскопии частицы порошка (0,7—1 мкм) отождествлены с агрегатами полимерных глобул (размер первичных частиц 0,06 мкм). Олигомер ТГМ-3 очищали по методике [4]. Контроль чистоты проводили по кинетическим кривым полимеризации. Композицию, состоящую из ТГМ-3, стабилизированного 2,2',6,6'-тетра-метилпиперидин-1-оксилом, и полимерного порошка (20, 30 и 50 об.%), приготавливали тщательным растиранием в ступке.
Методом ЯМР на ядрах Н и 13С определяли характеристики фрагментарной подвижности адсорбированного олигомера. Параллельно методом микрокалориметрии изучали кинетику радикально-инициированной полимеризации ТГМ-3 на полимерном носителе. Реакционную способность адсорбированного олигомера определяли как отношение констант скоростей реакций роста и обрыва цепи - fcp/Vfc0 при нулевой конверсии (Г-+0) [4J.
Спектры ЯМР Н, а также 13С с широкополосной шумовой развязкой от протонов (ширина полосы 0,9 кГц) получены в режиме фурье-преобразования на спектрометре «Tesla BS-567A» при рабочих частотах 100 и 25, 142 МГц. При записи спектров на ядрах 'Н ширина импульса составляла 9 мкс, время прослушивания отклика 1,069 с, при однократном сканировании. При записи спектров на ядрах 13С ширина импульса составляла 8 мкс, время прослушивания отклика 1,069 с, число сканирований варьировали от 10-до 400 в зависимости от содержания олигомера в образце. Стабилизацию в спектрах ТГМ-3 на полимерных зернах проводили на ядрах дейтерия D20 (99,9% обогащения дейтерием). Поскольку образцы представляли собой порошки, D20 помещали в коаксиально расположенный капилляр. Стабилизацию в спектрах 40%-ных (по массе) растворов ТГМ-3 в CDC13 (99,7% обогащения дейтерием) реализовали на ядрах дейтерия растворителя.
Времена спин-решеточной релаксации Ti ядер 'Н и ,3С олигомера ТГМ-3 на полимерных зернах измеряли методом инверсии с последующим восстановлением [5], используя импульсную последовательность 180°-т-90°-7\ Величину т варьировали от Т до 0,1 с, а Г выбирали более 57Л для полной релаксации ядер. Относительная погрешность измерения Ti не превышала 5% на ядрах 13С и 10% на ядрах *Н.
На рис. 1 показаны спектры ЯМР f3C ТГМ-3, адсорбированного полимерными зернами (30 об.% полимера) после частичной релаксации в процессе измерения 7Л методом инверсии — восстановления. На спектрах указаны значения т и отнесение сигналов, выполненное на основании литературных данных [6]. Как видно из рис. 1, а также из табл. 1, ТГМ-3 на твердом носителе имеет резко уменьшенное значение 7\ для всех ядер углерода, что можно объяснить увеличением корреляционного времени тс переориентации молекул ТГМ-3 [5]. Однако для ядер различных молекулярных фрагментов ТГМ-3 изменения 7Л неодинаковы. Отношение значений Tt для ядер 13С олигомера на полимерном носителе (например при 30 об.% зерен) к величине 7Л олигомера в растворе возрастают в ряду фрагментов молекулы олигомера следующим образом: С= С=0, =СН2, СН3 СН2ОС=0, 0СН2-СН20, СН2-СН2ОС=0 от 0,12 до 0,36.
Смотрите также
Скорость образования, расходования компонента и скорость реакции
...
Эфирные масла
Эфирные масла или благовония - это класс
летучих органических соединений, получаемых из эфиромасличных растений
обладающие характерным запахом и жгучим вкусом. Из плодов овощей, мякоти
фрук ...