Решение обратной задачи кинетики статистическими методамиМатериалы / Кислотно-каталитические процессы в нефтепереработке и в нефтехимии. Решение обратной задачи кинетики статистическими методами / Решение обратной задачи кинетики статистическими методами
В рамках рациональной стратегии структура кинетической модели задается (для каждой гипотезы) и решение обратной задачи проводится для оставшихся не отклоненных моделей. Задача сводится к оцениванию констант (параметров модели) и к сравнению качества описания эксперимента различными моделями.
Более простой случай – оценивание констант для линейных моделей (в дифференциальной или интегральной форме), например,
Оба уравнения – линейные функции y = bx и константа b находится методом наименьших квадратов (МНК).
В случае нелинейных моделей типа уравнений (15) или (20) решается менее строгая задача нелинейного оценивания. Параметры модели перебираются так, чтобы обеспечить минимум функционала
. (24)
При этом решение является не единственным, т.е. возможно существование множества наборов констант (параметров) уравнения, одинаково хорошо описывающих эксперимент. Адекватность модели оценивается по критериям Фишера, а значимость параметров – по критерию Стьюдента.
При решении обратной задачи следует иметь ввиду и закоррелированность параметров, также не позволяющую получить единственный набор констант (кроме причин, связанных с особенностями поверхности функционала (24)). Существует проблема идентифицируемости параметров.
Пример. Рассмотрим простейшую схему каталитической реакции (схема Михаэлиса-Ментен)
(25)
В квазистационарных условиях
(26)
В этом простом случае очевидно, что определяемыми (идентифицируемыми) параметрами будут и
. Этот случай неидентифицируемости называется локальной неидентифицируемостью.
Пример. Рассмотрим случай глобальной неидентифицируемости. При анализе нестационарной последовательной реакции
показано, что можно определить все три константы, но решение не является единственным. Рассчитанные значения [А]t и [B]t не изменяются, если и
поменять местами.
Таким образом, априорный анализ кинетической модели для выяснения параметров, которые могут быть оценены, является важным этапом процедуры решения обратной задачи химической кинетики.
Смотрите также
Лантаноиды
В
периодической системе Д. И. Менделеева есть 15 необычных металлов, очень
непохожих на все остальные. Это лантаноиды. Это и есть тема моей курсовой.
Лантаноиды недостаточно хорошо изучены, ...
Получение феррита бария из отходов производства машиностроительных предприятий
Бария
гексаферрит, бария карбонат, отход термического производства, утилизация, бария
хлорид, гальваношлам.
В курсовой работе предложены методы получения феррита бария, который ...
Кобальт (Cobaltum), Со
Кобальт - Со, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе э ...