Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях
Материалы / Кинетика низкотемпературной радиационной постполимеризации тетрафторэтилена в стеклующихся фторорганических растворителях
Страница 3

где [М] о — исходная концентрация мономера. Отсюда следует, что предельный выход полимера q (q при £>1), образовавшегося после достижения максимума скорости полимеризации, описывается следующим уравнением:

Величина g может быть легко определена из калориметрических измерений. Таким образом, для каждого из экспериментов, приведенных в таблице, известны величины к0 и q, поэтому, пользуясь уравнением (3) можем определить величину /cp[R„]0. Поскольку условия и доза предварительного облучения во всех экспериментах не изменялись и величины радиационно-химического выхода радикалов для ТФЭ и ФМП почти не различаются, можно сделать предположение об одинаковой эффективности инициирования полимеризации и, следовательно, постоянстве величины (Rp]o в каждом эксперименте. Поэтому изменение /ep[RP]0 с температурой отражает лишь температурную зависимость константы скорости роста, которая на рис. 3 представлена в аррениусовских координатах. Энергия активации роста Ер= (14650±2100) Дж/моль. Величина предэкспоненци-ального множителя константы скорости роста может быть получена, если удается измерить величину [Rp'] 0- Спектры ЭПР в исследуемой температурной области представляют собой сложную суперпозицию спектров радикалов ТФЭ и ФМП, и поэтому определение концентрации растущих полимерных радикалов не представляется возможным.

Образующиеся при радиолизе ФМП (при 77 К) и следующем его размораживании стабильные радикалы (RCT) [5] не инициируют полимеризацию в условиях эксперимента. Действительно, после размораживания радиолизованной системы ФМПЧ-ТФЭ и проведения полимеризации (конверсия мономера 13%) по спектрам ЭПР регистрируется RCT. Однако при замораживании и повторном разогревании системы полимеризация не наблюдается, RCT не инициируют полимеризацию, как в области расстекловывания, так и при температурах выше Тс.

Общая концентрация радикалов, стабилизированных при радиолизе системы ТФЭ + ФМП, возрастает практически линейно с дозой облучения до —20 Мрад. Радиационно-химический выход радикалов GR=1,3. При размораживании радиолизованной системы ФМП + ТФЭ до 300 К, как и для чистого ФМП [5], более половины накопленных радикалов и в жидкости остается стабильным. Однако эти радикалы, как упоминалось выше, не инициируют полимеризацию. Оценки показывают, что эффективность использования накопленных при низкотемпературном радиолизе радикалов для инициирования полимеризации невысока. Так, _если предполагать, что степень полимеризации полученного полимера Р=100, то лишь 5% накопленных в ходе радиолиза при 77 К радикалов дают полимерные цепи.

С увеличением дозы предварительного облучения выход полимера в исследуемой системе монотонно возрастает и при дозах 7—10 Мрад достигает предельного значения (рис. 4). Для выяснения причины такой остановки реакции было проведено исследование влияния фотоотбеливания на процесс постполимеризации. Облучение видимым УФ-светом (Х^236 нм) стеклообразного раствора ТФЭ в ФМП при 77 К в течение 5 ч не приводит к полимеризации при размораживании, на калориметрической кривой не наблюдается тепловыделения, связанного с полимеризацией. Фотоотбеливание образца, предварительно подвергнутого f-радиолизу в тех же условиях, приводит к частичному подавлению постполимеризации, выход полимера уменьшается вдвое. Действие же УФ-света при 77 К на систему ФМП + ТФЭ, содержащую RCT, не приводит к образованию полимера при расстекловывании. Таким образом, совокупность полученных экспериментальных данных не дает основания предполагать, что ионные процессы играют определяющую роль в постполимеризации.

Страницы: 1 2 3 4

Смотрите также

Галлий (Gallium), Ga
Галлий - химический элемент III группы периодической системы Д. И. Менделеева, порядковый номер 31, атомная масса 69,72; серебристо-белый мягкий металл. Состоит из двух стабильных изотопов с массовыми ...

Торий (Thorium), Th
Впервые торий выделен Й. Берцелиусом в 1828 году из минерала, позже получившего название торит (содержит сульфат тория). Торий был назван его первооткрывателем по имени бога грома Тора в скандинавской ...

Металлы
...