Непоседливые ионы
Материалы / Исследование твердых электролитов / Непоседливые ионы
Страница 1

При нормальных условиях перенос заряда ионами в обычных твердых телах - как кристаллических, так и аморфных - не очень значителен и при комнатной температуре удельная проводимость не превышает 10–10-10–12 Ом–1·см–1. Электропроводность же суперионных проводников составляет величину порядка 10–1 Ом–1·см–1 (при комнатной температуре!). Это значение близко к проводимости расплавов и концентрированных растворов жидких электролитов. Таким образом, речь идет о материалах, сочетающих свойства жидкостей (проводимость, характерную для жидкого расплава или раствора, ионную термоэдс) и твердых тел (механическую жесткость кристаллов). В настоящее время твердые электролиты перестали быть экзотическими объектами исследований благодаря открытию и синтезу нескольких сотен новых соединений с высокой ионной проводимостью. Они незаменимы при создании полностью твердотельных топливных элементов, газовых и жидкостных сенсоров, миниатюрных аккумуляторов (все знают о литиевых батарейках, но не все задумываются, из чего они сделаны). Для эффективного поиска таких веществ потребовались новые теоретические подходы к изучению явлений аномально быстрого ионного переноса в конденсированных средах и развитие специальных современных экспериментальных методик. Этим обусловлено возникновение нового раздела науки - ионики твердого тела, находящейся на пересечении физики и химии твердого тела, электроники и электрохимии, кристаллографии и неорганической химии, материаловедения и энергетики. Существование суперионной проводимости во многом зависит от структурных особенностей материала: чтобы ионы могли перемещаться, энергетически близких кристаллографических позиций для размещения потенциально подвижных ионов в элементарной ячейке должно быть больше, чем самих ионов; энергия разупорядочения ионов по позициям в кристаллической решетке и энергия, затрачиваемая на движение, должны быть малыми (~kT, где, как обычно, k - постоянная Больцмана, T - температура). Энергетические барьеры между соседними позициями должны быть небольшими (в сравнении с kT), что при наличии в кристаллической решетке вакантных мест приведет к статистическому распределению мобильных ионов по разрешенным позициям; в кристаллической структуре "сетка каналов" для движения ионов должна быть сквозной, в противном случае быстрое движение заряженных частиц будет возможным лишь в пределах одной или нескольких элементарных ячеек. Перечисленным требованиям удовлетворяют лишь особые кристаллы, в структуре которых для атомов одного или нескольких сортов отсутствует дальний порядок в их пространственном расположении, хотя для остальных частиц дальний порядок сохраняется. Такие соединения рассматриваются как кристаллы с собственным структурным разупорядочением.

Рис.1. Подвижные положительные ионы серебра, как аквалангисты, легко перемещаются в пространстве между рифами - атомами иода (сферы) - в кристалле AgI.

Хорошим примером служит структура модельного кристалла AgI (рис.1). Кристаллический каркас "держат" анионы иода, а два катиона серебра могут размещаться по 12 тетраэдрическим позициям элементарной ячейки. Именно для такой ажурной структуры, в которой нарушен дальний порядок для атомов одного типа, было введено наглядное (может быть, не совсем удачное) понятие "квазирасплавленная подрешетка", и считалось, что жесткая анионная подрешетка находится в "катионном расплаве".

Страницы: 1 2

Смотрите также

Элементы s-блока периодической системы
...

Получение дихлорэтана из этилена
...

Коллоидная химия
Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов: 1. Изучение строения и ...