Использование метода электропроводности для изучения кинетики образования поли-бис-малеимидаминов
Материалы / Использование метода электропроводности для изучения кинетики образования поли-бис-малеимидаминов
Страница 2

Рис. 1. Изменение R от температуры в ходе реакции образования ПБМИА из смеси I+III при мольной доле соединения III (0) (1); 0,05 (2); 0,1 (3); 0,25 (4); 0,33 (5) и 0,5 (0)

Рис. 2. Кинетика изменения рг в ходе реакции в смеси I + III (0,05 III) при 150 (7), 160 (2), 170 (3), 200 (4), 210 (5) и 220° (0)

Рис. 3. Зависимость р,, от количества прореагировавших двойных связей сс=с (1—3) и аминог.рупп cnh (i'— 3') в процессе образования олигомера из расплава смеси 1 + Ш (0,33 НИ) при 150 (7, Г). 160 (2, 2'), 200 (5) и 180° (3')

Для композиции II+IV характер изменения R — температура качественно аналогичен описанному. Различие заключается в том, что все контролируемые процессы заканчиваются при более высоких температурах; это определяется как более высокими Гпл соединений II и IV, так и большей жесткостью малеимидного цикла. В итоге образуется более жесткий :и термостойкий полимер.

Следует отметить, что полученные зависимости R — температура находятся в хорошем соответствии с данными ДТА [8], по которым экзотермические пики плавления, полученные на исследуемых композициях, проявляются примерно при тех же температурах, что и максимум на кривой R— температура. В этой же работе [8] прямыми методами потенцио-метрического титрования и анализа гель-фракции сделаны отнесения наблюдаемых пиков к соответствующим реакциям образования ПБМИА. В частности, для системы II+IV с мольной долей ДА равной 0,33 первый экзотермический пик при 180° связан с образованием олигомера, второй пик при 250°.— с процессом сшивки.

Следовательно, наши предположения относительно природы Rm верны, и метод электропроводности как более простой и достаточно чувствительный может служить для контроля за процессами образования ПБМИА,

Как видно из рис. 2, на начальной стадии реакции lg pv линейно возрастает во времени, причем скорость изменения увеличивается с температурой. Согласно работе [1], в этом случае d(lgр„) (т)/<2т пропорциональна скорости полимеризации т — время. Это подтверждается показанной на рис. 3 зависимостью между lg р„ и концентрацией аминогрупп CNH2 и двойных связей сс=с, ответственных за глубину превращений. Данные по концентрации взяты из работы [6] для системы IН-III при их мольном соотношении 2 : 1. В начале полимеризации lgp увеличивается прямо пропорционально количеству прореагировавших аминогрупп и двойных связей С=С, причем коэффициент пропорциональности остается постоянным до значений с^50% при температуре реакции 150—160° и -20% при 180-200°.

Таким образом, можно считать установленным, что величина lgpr на начальных стадиях процесса пропорциональна глубине полимеризации. Это позволяет из зависимости lg рr от времени полимеризации определить эффективную константу скорости полимеризации кзф как максимальную скорость изменения lgpr; k3li=[d(gpv)/dx]MaKC. Из зависимости gk3$ от обратной температуры определены энергия активации полимеризации Еа. Результаты, представленные в таблице, показывают, что Ел зависит как от мольной доли ДА, так и температурного интервала проведения реакции. Для системы 1+Ш([ДА]=0,5) в области 100-180° £а= =21 кДж/моль, а для температур 180—220° — 57 кДж/моль, т. е. на зависимости lg Аэф — 1/5" имеется излом при 180°. С уменьшением в системе мольной доли ДА точка излома смещается в сторону более низких температур. При мольной доле ДА равной 0,05 зависимость lg/сэф — 1/Г в исследуемом диапазоне температур выражена одной линией.

По данным работы [9], величина энергии активации нуклеофильной реакции присоединения аминогрупп к активированной двойной связи составляет 21—25 кДж/моль, что близко к полученным нами значениям Ел. Таким образом, можно уверенно считать, что при низких температурах в начальной стадии образования полимера идет чистый процесс олигомеризации. Скорость расхода аминогрупп в 2 раза выше скорости уменьшения количества двойных связей, что тоже соответствует предложенной идеальной схеме образования олигомера по реакций (1) при соотношении компонентов 1:2 (рис. 3, данные работы [6]). Гель-фракция при 160° образуется спустя 30 мин с момента начала реакции при конверсии аминогрупп >60%. Появление гель-фракции сопровождается изменением наклона на зависимости lg р — время, т. е. при низких температурах процесс образования олигомеров и полимеров идет последовательно во времени. При температуре >180° скорости превращения аминогрупп и двойных связей сравнимы, и гель-фракция образуется уже через 5 мин от начала реакции, при 200° выход ее достигает ~50%. Увеличение Ел при высоких температурах связано, следовательно, с наложением нескольких процессов, наиболее вероятно это олигомеризация БМИ и сшивка.

Страницы: 1 2 3

Смотрите также

Извлечение никеля из полировальных ванн для никелирования
При нанесении декоративных хромовых покрытий на деталь для защиты от коррозии сначала наносят слой никеля. Для получения гладкой и блестящей поверхности, необходимой для хромирования, нанос ...

Теллур (Tellurium), Te
Теллур - химический элемент VI группы главной подгруппы периодической системы Менделеева; атомный номер 52, атомная масса 127,60, относится к редким рассеянным элементам. В природе встречается в виде ...

Цирконий (Zirconium), Zr
Цирконий - химический элемент IV группы периодической системы Менделеева; атомный номер 40, атомная масса 91,22; серебристо-белый металл с характерным блеском. Известно пять природных изотопов Ц.: 90Z ...