Ионно-парная хроматография
Материалы / Ионно-парная хроматография
Страница 1

Ион-парная хроматография давно находила применение в жидкостной хроматографии и экстракции для извлечения лекарств и их метаболитов из биологических жидкостей в органическую фазу. Как самостоятельный раздел ВЭЖХ ион-парная хроматография, называвшаяся также экстракционной, парно-ионной, хроматографией с использованием ПАВ, хроматографией с жидким ионообменником, стала развиваться с середины 70-х годов. Метод занимает промежуточное положение между ионообменной хроматографией и адсорбционной, распределительной или обращенно-фазной. Недостатки ионообменных материалов, а именно невоспроизводимость от партии к партии, меньшая активность и стабильность по сравнению с другими сорбентами и небольшой выбор наполнительного материала, исключающий изменение селективности за счет сорбента, привел к некоторому ограничению применения ионообменной хроматографии. В ион-парной хроматографии большинство этих недостатков можно преодолеть. Метод ион-парной хроматографии характеризуется универсальностью и обладает преимуществом по сравнению с классической ионообменной хроматографией, в котором активные центры фиксированы. Вследствие более быстрой массопередачи в ион-парной системе хроматографическое разделение более эффективно, чем на ионообменнике с фиксированными и активными зонами.

Ион-парную хроматографию используют для разделения образцов, содержащих как ионные, так и неионные соединения. Ее применяют в тех случаях, когда трудно или невозможно получить приемлемое разделение образца методом ионообменной хроматографии адсорбционной или обращенно-фазной. В некоторых случаях ионные соединения можно разделить на обращенной фазе, придавая им свойства неионных соединений (подавление ионов) с помощью буферного раствора с соответствующим рН, при котором равновесие смещается в сторону образования неионизированной формы. Полярные вещества, обладающие липофильными свойствами, делятся при этом на обращенной фазе как неполярные. Однако большинство наполнительных материалов колонок надежно работает только при рН=1,5–7,5. Исключение составляет партисил 5 ОДС, работающий при рН=1–8,5. В этом диапазоне рН сильные кислоты и основания ионизированы.

Попытки разделения сильных кислот и оснований методом подавления ионов оказываются неудачными из-за плохого удерживания веществ и асимметрии пиков. Соединения, остающиеся ионизированными в интервале рН=2–8, удовлетворительно разделяются методом ион-парной хроматографии, когда в подвижную фазу добавляют противоион, заряд которого противоположен заряду молекулы, и создается ион-парный комплекс, обладающий свойствами неполярного вещества. Если к ионному соединению, растворимому только в воде, добавить противоион, то образуется ионная пара, которая, обладая свойством растворяться в органической фазе, распределится между водным и органическим слоем. Возможна также адсорбция липофильной части противоиона в углеводородной фазе наполнительного материала. Очевидно, что катионы будут хорошо экстрагироваться анионами, и наоборот.

Таким образом, ионизированные молекулы находятся в равновесии и образуют ионную пару: растворенное вещество–противоион, причем все равновесия имеют концентрационные зависимости. В упрощенном виде распределительное равновесие может быть представлено в виде

В+вод + Р – орг <=> (В+Р-) орг,

где В+ – протонированная форма основания, которое нужно экстрагировать; Р- – анион кислоты, который применяют для образования ионной пары.

Ионная пара В+Р – будет растворяться в полярной органической фазе, например в смеси спирта с хлороформом, а ионные формы будут растворяться в воде. Для определения ароматических сульфокислот применяют в качестве противоиона тетра-бутиламмоний, а для анализа хинина–сульфокислоты камфоры. В качестве противоиона обычно используют четвертичные или третичные амины, соли сульфокислот. Наиболее часто применяют тетраметил, тетрабутил, пальметилтриметиламмоний для анализа кислот, сульфированных красителей и третичные амины типа триоктиламина для анализа сульфонатов. Противоионами для анализа оснований являются соли алкил- и арилсульфокислот, перхлораты, пикраты.

Существует четыре варианта ионно-парной хроматографии:

1) адсорбционная хроматография, когда ионные пары вымываются элюентом с силикагеля;

2) нормально-фазная распределительная хроматография, когда вода, нанесенная на пористую подложку, является неподвижной фазой, органический растворитель–элюентом;

3) обращенно-фазная распределительная хроматография с органическим растворителем в качестве неподвижной фазы и водой в качестве элюента;

4) обращенно-фазная хроматография, когда гидрофобный ион, образующий ионную пару, адсорбируется углеводородной частью неподвижной фазы. Иногда добавляют ПАВ, например цетилтриметиламмонийбромид (цетримид).

Ион-парную хроматографию применяют и для разделения амфотерных веществ. Когда ион-парную хроматографию применяют в нормально-фазном варианте в качестве противоионов, иногда используют ионы, способные к абсорбции света или к флуоресценции, для улучшения идентификации некоторых не поглощающих свет соединений. В этом варианте ион-парной хроматографии селективность системы изменяется за счет изменения полярности органической фазы. В табл. 3.4 приведены примеры использования ион-парной хроматографии при работе в режиме нормально-фазной хроматографии.

Страницы: 1 2 3 4

Смотрите также

Химический анализ катионов
Основой любого химического исследования является совокупность различных химических наук, каждая из которых нуждается в результатах химического анализа, поскольку химический состав – основа ...

Олово (Stannum), Sn
Олово - химический элемент IV группы периодической системы Менделеева; атомный номер 50, атомная масса 118,69; белый блестящий металл, тяжёлый, мягкий и пластичный. Элемент состоит из 10 изотопов с ма ...

Селен (Selenium), Se
Селен - химический элемент VI группы периодической системы Менделеева; атомный номер 34, атомная масса 78, 96; преимущественно неметалл. Природный С. представляет собой смесь шести устойчивых изотопов ...