Роль углерода в живой природе.
Статьи / Углерод (С) / Роль углерода в живой природе.

Уникальная роль углерода в живой природе обусловлена его свойствами, которыми в совокупности не обладает ни один другой элемент периодической системы. Между атомами углерода, а также между углеродом и другими элементами образуются прочные химические связи, которые, однако, могут быть разорваны в сравнительно мягких физиологических условиях (эти связи могут быть одинарными, двойными и тройными). Способность углерода образовывать 4 равнозначные валентные связи с другими атомами углерода создаёт возможность для построения углеродных скелетов различных типов - линейных, разветвленных, циклических. Показательно, что всего три элемента - углерод С, кислород О и водород Н - составляют 98% общей массы живых организмов. Этим достигается определённая экономичность в живой природе: при практически безграничном структурном разнообразии углеродистых соединений небольшое число типов химических связей позволяет намного сократить количество ферментов, необходимых для расщепления и синтеза органических веществ. Особенности строения атома углерода лежат в основе различных видов изомерии органических соединений (способность к оптической изомерии оказалась решающей в биохимической эволюции аминокислот, углеводов и некоторых алкалоидов).

Согласно общепринятой гипотезе А. И. Опарина, первые органические соединения на Земле имели абиогенное происхождение. Источниками углерода служили метан (CH4) и цианистый водород (HCN), содержавшиеся в первичной атмосфере Земли. С возникновением жизни единственным источником неорганического углерода, за счёт которого образуется всё органическое вещество биосферы, является двуокись углерода (CO2), находящаяся в атмосфере, а также растворённая в природных водах в виде HCO-3. Наиболее мощный механизм усвоения (ассимиляции) углерода (в форме CO2) - фотосинтез - осуществляется повсеместно зелёными растениями (ежегодно ассимилируется около 100 млрд. т CО2). На Земле существует и эволюционно более древний способ усвоения CO2 путём хемосинтеза; в этом случае микроорганизмы-хемосинтетики используют не лучистую энергию Солнца, а энергию окисления неорганических соединений. Большинство животных потребляют углерод с пищей в виде уже готовых органических соединений. В зависимости от способа усвоения органических соединений принято различать автотрофные организмы и гетеротрофные организмы. Применение для биосинтеза белка и других питательных веществ микроорганизмов, использующих в качестве единственного источника углерода углеводороды нефти,- одна из важных современных научно-технических проблем.

Помимо основной функции - источника углерода - двуокись углерода CO2, растворённая в природных водах и в биологических жидкостях, участвует в поддержании оптимальной для жизненных процессов кислотности среды. В составе CaCO3 углерод образует наружный скелет многих беспозвоночных (например, раковины моллюсков), а также содержится в кораллах, яичной скорлупе птиц и др. Такие соединения углерода, как HCN, CO, CCl4, преобладавшие в первичной атмосфере Земли в добиологический период, в дальнейшем, в процессе биологической эволюции, превратились в сильные антиметаболиты обмена веществ.

Смотрите также

Лавуазье – один из основателей научной химии
...

Кремний (Silicium), Si
Третьим элементом, наиболее распространенным в природе, является кремний. Название этого элемента произошло от латинского "ляпис креманс", что значит - камень, дающий огонь. Так назывался тв ...

Приложение 8
Тему “Углерод, подгруппа углерода.” можно завершить зачетным уроком по составлению обобщающей схемы, которая пригодится для сдачи экзамена по химии и приведет в систему знания учащихся, дополняя в ...