Гетеропереход графит (монокристалл)
Статьи / Транспортные процессы и гетеропереходы в твердофазных электрохимических системах / Гетеропереход графит (монокристалл)
Страница 3

Диффузия центров окраски была исследована двумя методами. Первый метод, основанный на измерении скорости обесцвечивания монокристаллических пластинок, позволил получить зависимость

D={2,2* 10»2 ехр [-(0,33±0,02) эВ/кТ] }см2/с.

Вторым методом, заключающимся в анализе распределения концентрации центров окраски в диффузионной зоне (рис.12), получена близкая зависимость.

О={1,1*10»2ехр [-(0,31±0,04) эВ/кТ] }см2/с.

Наиболее вероятным процессом, протекающим на границе кристалла, является

½. *J2 о Г + h + Ag+m + VAg+ о AgJ + h + VAg+,(8)

где h - дырка, Ag+m - ион серебра в поверхностном слое. Окраска кристаллов, появляющаяся при взаимодействии с йодом, таким образом, должна быть приписана центрам окраски, в структуру которых входят дырки. Процесс окрашивания обратим, т.е. на поверхности кристалла дырки не только возникают, но и, при уменьшении концентрации адсорбированного йода, рекомбинируют на ионах йода. При этом образуются атомы и молекулы йода, которые могут десорбироваться. Процесс (8) предполагает образование в поверхностном слое кристалла определенной концентрации дырок. За счет высокой подвижности и за счет градиента концентрации дырки диффундируют в глубину кристалла. Для компенсации отрицательного заряда (заряда ионов йода) и избыточного положительного заряда в объеме кристалла должен возникнуть встречный поток ионов серебра. Аддитивное окрашивание суперионного проводника при комнатной температуре возможно только при высокой подвижности ионов серебра. Снижение коэффициента диффузии Ag+ повлечет за собой и снижение коэффициента диффузии центров окраски. Поэтому аддитивное окрашивание AgjRbJs при комнатной температуре связано с эффектом суперионной проводимости. Прямым следствием аддитивного окрашивания является образование слоя иодида серебра на поверхности, т.е. запорного слоя.

Эффект образования запорного слоя обнаружен при изучении диффузии центров окраски йода через монокристаллическую мембрану.

Проведены исследования гетероперехода (монокристалл Ag4RbJ5 окрашенный в парах йода) /графит при стационарной температуре. Причем монокристалл самопроизвольно обесцвечивался, теряя иод. Серия годографов вектора импеданса Rs,-1/соС5, показана на рис.13. Методом компьютерной оптимизации было показано, что минимальное значение функции ошибок имеет схема с двумя независимыми адсорбционными процессами - первая, отвечающая релаксации ионов Rb+, вторая - дефектов, связанных с центрами окраски (рис.Н. а). Обработка импедансных измерений показывает, что при обесцвечивании растут значения R3 и W3, а С3 снижается (табл.3), и при стремлении концентрации центров окраски к нулю цепь Сз, R3 > W3 блокируется, и мы имеем традиционную цепь, описывающую чистый гетеропереход. Показано, что для гетеропереходов с поликристаллическим супериоником отсутствует адсорбционная емкость в йодной цепи и процесс определяется сопротивлением и диффузионным импедансом Варбурга, т.е. система становится проводящей по постоянному току.

Получены температурные зависимости параметров гетеропереходов графит/ Ag4RbT5(mwiHKpHCTarui) с концентрацией центров окраски 2.1017 и 2» 1018 см-3. Обнаружено, что при увеличении концентрации центров окраски увеличиваются энергии активации для основных энергетических величин. Показано, что энергия активации диффузии ионов иода в области гетероперехода зависит от концентрации иода и меняется от 0,69 до 1,01 eV, что близко к результатам, полученным из диффузии меченого иода. Величина проводимости основных носителей изменяется мало и энергия активации составляет - 0,113 и - 0,106 eV соответственно. Эти значения совпадают со значениями энергии активации не йодированных образцов.

Гетеропереход с йодным комплексом (фенотиазин-т5) обнаруживает подобие поведения W2 на обратимых гетеропереходах с серебром. Температурная зависимость W2 представляет две прямые, одна низкотемпературная - до 300К

W2 = (6.38 ± 1.31) 10-3Ъехр [(0.118±0.005) еУ/к. Т] Ом. см2/с|/2, вторая высокотемпературная - выше 300К

W2 = (1.90 +42. |,8) 10»7Т. ехр [(0.394 ± 0.088) еУ/кТ] Ом. см2/с1/2. В случае с йодными комплексами диффузия ионов. Rb+ затрудняется. Вычислены энергии активации для диффузии до примесным дефектам 0,24 eV и для диффузии по собственным дефектам 0,40 eV. R3 = (7.36 +1<u_4r3) 10-10T. exp [(0.404 ± 0.022) еУ/кТ] Ом. см2/с»2 близки к значениям, полученным с графитово-йодными электродами.

Страницы: 1 2 3 4

Смотрите также

Удивительные свойства воды
...

Исследование и разработка новых сорбентов
Развитие науки на пороге XXI века было бы невозможно себе представить без введения и использования новых технологий. Одной из развивающихся и прогрессирующих наук в наше время является био ...

Кадмий (Cadmium), Cd
Кадмий - химический элемент II группы периодической системы Менделеева; атомный номер 48, атомная масса 112,40; белый, блестящий, тяжёлый, мягкий, тягучий металл. Элемент состоит из смеси 8 стабильных ...