Гетеропереход графит (монокристалл)Статьи / Транспортные процессы и гетеропереходы в твердофазных электрохимических системах / Гетеропереход графит (монокристалл)Страница 2
W2/T = W’0exp [(0.5Em + 1.5Ef) /kT].
Анализ температурных зависимостей W2 от температуры позволяет определить природу не основных носителей в модели АРДС. Экспериментальные результаты для монокристалла в контакте с серебром в координатах ln(W2/T), 1/Т образуют два линейных участка (рис.10): для температур выше 305.5К -
W2 = (3.09 ± 0.84) 10-4Т*ехр [(0.183 ± 0.007) еУ/кТ] Ом. см2/с,/2, (4) для температур ниже 305.5К
W2 = (1.62 ± 0.11) 10»2Т*ехр [(0.079 ± 0.002) еУ/кТ] Ом. см2/с»2. (5)
В случае поликристаллического образца с Ag-электродами при температурах выше 285К
W2 = (2.33 ±0.44) 10”4T*exp [(0. 190 + 0.005) eV/kT] OM. CM2/c1/2, (6) ниже 285К
W2 = (3.88 ± 0.36) 10»2Т*ехр [(0.063 ± 0.002) еУ/кТ] Ом. см2/с|/2. (7)
Следует отметить, что для ячеек с графитовыми электродами в интервале температур 253 .323К наблюдали лишь одну ветвь линейной зависимости. Для монокристалла она отвечала уравнению (2) с энергией активации 0,068 eV, для поликристаллических образцов - уравнению (3) с энергией активации 0,056 eV, что в обоих случаях близко к низкотемпературным ветвям соответствующих зависимостей при серебряных электродах. Из уравнений (2), (3) и (4) - (7) получаем Ет= 0,11 .0,16 eV и Ef - 0,07 .0,08 eV в зависимости от состояния суперионного проводника и материала электродов. Учитывая численные значения Ет и Ef, а также учитывая соотношение D2 = D02exp [-(Em + Ef) /kT] и зависимость постоянной Варбурга от коэффициента диффузии не основных носителей, вычисляем энергию активации диффузии не основных носителей. Она составляет для диффузии по примесным дефектам 0,11 .0,16 eV и для диффузии по собственным дефектам 0, 19 .0,25 eV.
Неосновными носителями в Ag4RbJ5 могут быть как ионы Г, так и ионы Rb+. Однако энергии активации диффузии ионов J, полученные на монокристаллах 0,98 eV (интервал 444 .501К) и на поликристаллах 0,58 eV (297 .413К, Чеботин) существенно больше 0,25eV; полученной из анализа энергетических характеристик Варбурга. Энергия активации диффузии ионов рубидия 0,40 eV (поликристалл, Schroder, 1980). Поэтому не основными носителями, описываемыми импедансом Варбурга, в модели АРДС можно считать ионы рубидия Rb+. Этот вывод согласуется с результатами Н.Г. Букун.
Обнаружен перегиб температурной зависимости ln(RF/T) от 1/Т на границах Ag с поликристаллическими образцами Ag4RbJ5 и смеси (5Ag4RbJ5+Rb2AgT3) (рис.11). Показано, что температура перегиба 288-ЗОО К совпадает с температурой границы термодинамической нестабильности суперионика 300-308К в пределах погрешности. Причем у более мелкодисперсного образца температура перегиба ниже. Близость энергий активации для a-AgJ и высокотемпературных ветвей позволяет говорить об образовании тонкой пленки йодистого серебра на поверхности суперионика в контакте с серебряным электродом. Низкотемпературные ветви с энергией активации 0,083-0,103eV связаны с разложением поверхностных слоев вследствие нестабильности суперионика ниже 288-3Q0K. На монокристалле такого эффекта не наблюдается, по-видимому, вследствие низкой дефектности структуры.
В шестой главе приводятся экспериментальные и теоретические результаты по исследованию кинетики не основных носителей. Предлагается модель центра окраски. Исследуются процессы диффузии ионов йода и центров окраски.
Диффузия ионов йода в монокристаллах изучена для интервала 444 .501 К. Для коэффициента диффузии получена зависимость
Dj - = {9,9* 10'2 ехр [-(0,98±0,08) эВ/кТ] }см2/с.
Учитывая низкое значение энергии активации (-0,58 eV), полученное Чеботиным и др. (1981) для диффузии ионов йода в поликристаллических образцах (интервал 296 .413К), можно предположить, что в интервале 296 .413К диффузия ионов У обусловлена примесными дефектами, а в интервале 444 .501К - собственными.
Приблизительная оценка верхнего значения коэффициента диффузии ионов Г в монокристаллах при 298К позволяет получить значение 4*10'16 см2/с. Столь низкое значение коэффициента диффузии говорит о высокой «жесткости» анионной подрешетки в Ag4RbJ5 при комнатной температуре.
Коэффициент диффузии элементарного йода при температуре 418К меньше, чем 2*10»12 см2/с. Однако было замечено, что даже при 298К окраска йода быстро распространяется в глубину кристалла.
Смотрите также
Способы получения алюминия
Алюминий является
важнейшим металлом, объем его производства намного опережает выпуск всех
остальных цветных металлов и уступает только производству стали. Высокие темпы
прироста производст ...
Литий (Lithium), Li
Литий (лат. Lithium), Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Л. состоит из двух стабильных изо ...