Теории активации и механизмы элементарного акта
Статьи / Теории активации и механизмы элементарного акта
Страница 3

Активационное уравнение Аррениуса

1.1. Вывод уравнения активации по Вант-Гоффу:

Из уравнения изохоры Вант-Гоффа для обратимой реакции, содержащей прямую и обратную стадии , получаем

(5.1)

Для отдельных стадий: (5.2)

1.2.Вывод уравнения активации по Аррениусу:

Реакция рассматривается как состоящая из двух гипотетических стадий. На первой устанавливается равновесие между исходными и активными частицами. На второй протекает собственно превращение активных частиц в продукт.

(5.3)

Обозначим и получаем активационное уравнение Аррениуса:

. (5.4)

Последнее выражение получается, если принять простейшее допущение и считать энергию активации постоянной и не зависящей от температуры. Это справедливо для небольших интервалов температуры. В большинстве приложений уравнение Аррениуса является основой экспериментального определения активационных параметров химической реакции. Простейший способ – графический. Аррениусовскими координатами называют переменные (1/T; lnk ). В этих переменных экспериментальные данные ложатся на прямолинейный график: Рис.10.

Угловой коэффициент этой линейной функции в нормальных случаях отрицателен и даёт возможность определить энергию активации. Самый смысл энергии активации говорит о том, что эта величина по знаку должна быть положительна. Если всё же наклон прямой в аррениусовских координатах окажется положительным, то это означает отрицательный знак кажущейся энергии активации, и это прямое указание на сложный механизм реакции, и такое усложнение может иметь место уже в самом элементарном акте. Подобная ситуация наблюдается у тримолекулярных реакций .

2) Молекулярные модели химического элементарного акта

2.1. Теория Активных Соударений (ТАС)

2.1.1. Число двойных соударений между одинаковыми частицами

Одна частица в единицу времени пробежит «цилиндр соударения» (рис.), в котором затронет любую частицу, центр которой в него попадает, и его объём выражается через среднюю скорость частицы u и её диаметр :

(5.6)

Число частиц в этом цилиндре пропорционально его объёму и мольной концентрации. С ними-то и сталкивается одна частица. Полное же число столкновений в единичном объёме Z’ должно бы быть равно половине от произведе­ния числа соударений одной частицы на число всех частиц в объёме (удобно выразить его через мольную концентрацию), но, согласно газокинетической теории Максвелла, истинное число соударений Z превышает Z’ в 21/2 раз из-за ломаного характера траектории, увеличивающего вероятность встреч частиц в пространстве. Необходимые формулы имеют вид:

Подпись:

(5.7)

Примечание: Неискушённый читатель вправе удивиться столь простому и решительному способу подсчёта числа столкновений частиц – ведь, всякое соударение изменяет вектор скорости, и реальная траектория это ломаная линия. Однако учтём, что при упругом ударе изменяется лишь направление, а не модуль вектора скорости, и поэтому длина ломаной траектории, образуемой за единицу времени, остаётся равной линейной скорости частицы. Это подобно тому, как длина столярной складной линейки суммируется из её отдельных сегментов. Полезно отметить, что и уточнение числа соударений за счёт учёта постоянной смены ориентации движений, носит формальный характер, не меняя существа дела. Добавим, что газокинетический диаметр частиц понятие до известной степени условное и вводится для упрощения модели.

2.1.2. Число соударений между разными частицами (частицы вида 1 и частицы вида 2)

В формулу средней скорости следует подставить усреднённый диаметр и приведённую массу, и также нет необходимости уменьшать число соударений вдвое. Все прочие соображения те же самые . Поэтому при наличии всех сомножителей со слегка изменённым смыслом численный множитель возрастёт вдвое . Действительно, получаем

(5.8)

2.1.3. Число «горячих» частиц одного вида равно , откуда получаем:

Страницы: 1 2 3 4

Смотрите также

Постулаты квантовой механики
Каждый из постулатов квантовой механики, конечно, можно сформулировать в виде лаконичного математического утверждения, но, как всякое исходное допущение, любой из них построен на целой сово ...

Курс лекций по Коллоидной химии (Часть 2)
...

Извлечение тиоционата натрия из отработанных растворов для прядения акрилового волокна
В процессе производства акриловых волокон, включающем стадии полимеризации, растворения и прядения, в систему вводятся различные виды органических и неорганических соединений, являющихся кат ...