Стекляные электроды
Статьи / Стекляные электроды
Страница 6

В наиболее общей форме суть окислительно-восстановительных превращений можно выразить следующим образом.

Окислительные вещества – отнятие у него электронов посредством другого вещества – окислителя. Окислитель со своей стороны присоединяет электроны, подвергаясь, таким образом, восстановлению. Восстановитель отдает электроны окислителю. Как видно из этих определений, окисление и восстановление – строго сопряженные между собой процессы. Один не может идти без другого.

В качестве меры окислительной или восстановительной способности вещества в растворе может быть естественно выбрана активность “свободных” электронов в нем. На самом деле среднее время жизни “свободного” электрона измеряется отрезками порядка 10 -11 – 10 -15 сек. Казалось бы, при этом нечего и говорить о существовании их в растворе. Однако, во-первых, это названы времена жизни какого-то отдельного электрона в процессе его перехода от Red к Ox. Вследствие статического характера превращений, связанного с многочисленностью элементарных актов превращения, число которых выражается единицей с множеством нулей, какое-то количество свободных электронов и выражает вероятность их появления. Во-вторых, некоторые элементарные процессы в растворе могут происходить еще быстрее, чем “гибнет” электрон, и для их осуществления электронов всегда хватает.

Обычно способность химической системы производить какие-либо действия (в данном случае окисление или восстановление) выражают в энергетических единицах и называют “потенциалом” (в данном случае это восстановительный потенциал или окислительный потенциал (ОП). Потенциал – это работа, которую надо произвести, чтобы перевести систему из некоторого состояния, принятого за стандартное, в данное состояние.

Связь между активностью компонентов системы и потенциалом обычно логарифмическая; коэффициентом пропорциональности между логарифмом активности или концентрации и потенциалом, выраженным в электрических энергетических единицах, является множитель b = 2,303 RT / F:

ОП = const – b lg a e = const – b lg K – b/n lg a Red /a Ox = (ОП) 0 ± 1 + b/n lg a Ox /a Red

Здесь (ОП) 0 – значение ОП для стандартного состояния, в котором a Red = a Ox = 1.

ОП, таким образом, линейно связан с логарифмом активности свободных электронов и выражает окислительную способность раствора, определяемую природой системы (константами, входящими в (ОП) 0 ), заданными соотношением активности a Ox - и a Red -форм и температурой раствора.

Окислительную способность раствора, выражаемая его ОП, тем больше, чем меньше активность свободных электронов в нем. Она тем больше, чем больше в растворе окислителей и меньше восстановителей.

Заметим, что применяемые часто термины “окислительно-восстановительный потенциал” или “редокс-потенциал”, в которых подчеркивается двусторонность всякого редокс-превращения, по существу, не нужны, так как в действительности мы имеем дело всегда либо с окислительной, либо с восстановительной способностью раствора по отношению к какому-то другому раствору.

ОП раствора можно рассчитать или измерить. И при измерениях и при расчетах сравнивают соответственно реально или мысленно ОП исследуемой системы с ОП некоторой редокс-системы, принятой за стандарт: (ОП) 0 станд є 0. В качестве стандартной выбрана редокс-система газообразный водород – ион водорода:

Н + + е = Ѕ Н 2

Если водород подается в раствор при давлении 1 атм, а активность Н + в растворе а Н + = 1 (рН = 0), то (ОП) 0 Н + /Н2 є 0.

Непосредственное экспериментальное сравнение с ОП водородной системы часто по ряду причин бывает затруднительно. Тогда применяют другую систему Ох 2 /Red 2 , чей ОП относительно водородной системы точно известен. Исследуемую систему Ох 1 /Red 1 приводят в равновесие с системой Ох 2 /Red 2 :

Ox 1 + Red 2 “ Ox 2 + Red 1

В состоянии равновесия между обеими системами активности электронов в них одинаковы, так как они находятся в одном растворе. Их ОП также равны, а так как ОП второй системы предполагается известным, то становится известным и ОП 1 . На этом соотношении основаны методы измерения ОП.

Практически сравнение ОП исследуемой и стандартной систем может быть проведено двумя способами: калориметрически (с помощью цветных редокс-индикаторов) или электрометрически. Мы видим здесь полную аналогию с рН-метрией.

В качестве редокс-индикаторов употребляют некоторые органические красители, природные или синтезированные искусственно, Ох- и Red-формы которых имеют разную окраску. Цвет раствора будет зависеть от соотношения концентраций обеих форм, т.е. от активности электронов, т.е. от ОП изучаемой системы, к которой добавлен индикатор. Чтобы индикатор не внес при этом заметных изменений в саму изучаемую систему, его вводят в относительно малых, так называемых “индикаторных”, количествах.

Страницы: 1 2 3 4 5 6 7 8

Смотрите также

Сходство фазового поведения смесей ПАВ с полимерами и смешанными растворами полимеров
...

Электрохимическое поведение германия
Германий является рассеянным элементом и распространен в природе только в виде соединений в различных минералах. Такие минералы встречаются редко и содержат мало Ge. Наиболее распространенны ...

Моделирование парожидкостного равновесия в четырехкомпонентной смеси
...