Сурьма (Stibium), Sb
Химические элементы / Сурьма (Stibium), Sb

Сурьма - химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных изотопа 121Sb (57,25% ) и 123Sb (42,75% ). Из искусственно полученных радиоактивных изотопов важнейшие 122Sb (Т1/2 = 2,8 cym), 124Sb (T1/2 = 60,2 cym) и 125Sb (T1/2 = 2 года).

Историческая справка. С. известна с глубокой древности. В странах Востока она употреблялась примерно за 3000 лет до н. э. для изготовления сосудов. В Древнем Египте уже в 19 в. до н. э. порошок сурьмяного блеска (природный Sb2S3) под названием mesten или stem применялся для чернения бровей. В Древней Греции он был известен как stími и stíbi, отсюда латинский stibium. Около 12-14 вв. н. э. появилось название antimonium. В 1789 А. Лавуазье включил С. в список химических элементов под названием antimoine (современный английский antimony, испанский и итальянский antimonio, немецкий Antimon). Русская "сурьма" произошло от турецкого sürme; им обозначался порошок свинцового блеска PbS, также служивший для чернения бровей (по другим данным, "сурьма" - от персидского сурме - металл). Подробное описание свойств и способов получения С. и её соединений впервые дано алхимиком Василием Валентином (Германия) в 1604.

Распространение в природе. Среднее содержание С. в земной коре (кларк) 5 ×10=5 % по массе. В магме и биосфере С. рассеяна. Из горячих подземных вод она концентрируется в гидротермальных месторождениях. Известны собственно сурьмяные месторождения, а также сурьмяно-ртутные, сурьмяно-свинцовые, золото-сурьмяные, сурьмяно-вольфрамовые. Из 27 минералов С. главное промышленное значение имеет антимонит (Sb2S3) (см. также Сурьмяные руды). Благодаря сродству с серой С. в виде примеси часто встречается в сульфидах мышьяка, висмута, никеля, свинца, ртути, серебра и других элементов.

Физические и химические свойства. С. известна в кристаллической и трёх аморфных формах (взрывчатая, чёрная и жёлтая). Взрывчатая С. (плотность 5,64-5,97 г/см3) взрывается при любом соприкосновении: образуется при электролизе раствора SbCl3; чёрная (плотность 5,3 г/см3) - при быстром охлаждении паров С.; жёлтая - при пропускании кислорода в сжиженный SbH3. Жёлтая и чёрная С. неустойчивы, при пониженных температурах переходят в обыкновенную С. Наиболее устойчивая кристаллическая С. (см. также Сурьма самородная), кристаллизуется в тригональной системе, а = 4,5064 ; плотность 6,61-6,73 г/см3(жидкой - 6,55 г/см3); tпл 630,5 °C; tкип1635-1645 °C; удельная теплоёмкость при 20-100 °C 0,210 кдж/(кг × К) [0,0498 кал/(г ×°C)]; теплопроводность при 20 °C 17,6 вт/м × К [0,042 кал/(см × сек × °C)].Температурный коэффициент линейного расширения для поликристаллической С. 11,5 ×10=6 при 0-100 °C; для монокристалла a1 = 8,1×10=6 a2 = 19,5×10=6 при 0-400 °C, удельное электросопротивление (20 °C) (43,045×10=6 ом×см). С. диамагнитна, удельная магнитная восприимчивость -0,66 ×10=6. В отличие от большинства металлов, С. хрупка, легко раскалывается по плоскостям спайности, истирается в порошок и не поддаётся ковке (иногда её относят к полуметаллам). Механические свойства зависят от чистоты металла. Твёрдость по Бринеллю для литого металла 325-340 Мн/м2 (32,5-34,0 кгс/мм2); модуль упругости 285-300; предел прочности 86,0 Мн/м2 (8,6 кгс/мм2). Конфигурация внешних электронов атома Sb5s25r3. В соединениях проявляет степени окисления главным образом +5, +3 и =3.

В химическом отношении С. малоактивна. На воздухе не окисляется вплоть до температуры плавления. С азотом и водородом не реагирует. Углерод незначительно растворяется в расплавленной С. Металл активно взаимодействует с хлором и др. галогенами, образуя сурьмы галогениды. С кислородом взаимодействует при температуре выше 630 °C с образованием Sb2O3(см. Сурьмы окислы). При сплавлении с серой получаются сурьмы сульфиды, так же взаимодействует с фосфором и мышьяком. С. устойчива по отношению к воде и разбавленным кислотам. Концентрированные соляная и серная кислоты медленно растворяют С. с образованием хлорида SbCl3 и сульфата Sb2(SO4)3; концентрированная азотная кислота окисляет С. до высшего окисла, образующегося в виде гидратированного соединения xSb2O5 ×уН2О. Практический интерес представляют труднорастворимые соли сурьмяной кислоты - антимонаты(МеSbO3 ×3H2O, где Me - Na, К) и соли не выделенной метасурьмянистой кислоты - метаантимониты (MeSbO2 ×ЗН2О), обладающие восстановительными свойствами. С. соединяется с металлами, образуя антимониды.

Получение. С. получают пирометаллургической и гидрометаллургической переработкой концентратов или руды, содержащей 20-60% Sb. К пирометаллургическим методам относятся осадительная и восстановительная плавки. Сырьём для осадительной плавки служат сульфидные концентраты; процесс основан на вытеснении С. из её сульфида железом: Sb2S3 + 3Fe Û 2Sb + 3FeS. Железо вводится в шихту в виде скрапа. Плавку ведут в отражательных или в коротких вращающихся барабанных печах при 1300-1400 °C. Извлечение С. в черновой металл составляет более 90%. Восстановительная плавка С. основана на восстановлении её окислов до металла древесным углем или каменноугольной пылью и ошлаковании пустой породы. Восстановительной плавке предшествует окислительный обжиг при 550 °C с избытком воздуха. Огарок содержит нелетучую четырёхокись С. Как для осадительной, так и для восстановительной плавок возможно применение электропечей. Гидрометаллургический способ получения С. состоит из двух стадий: обработки сырья щелочным сульфидным раствором с переводом С. в раствор в виде солей сурьмяных кислот и сульфосолей и выделения С. электролизом. Черновая С. в зависимости от состава сырья и способа её получения содержит от 1,5 до 15% примесей: Fe, As, S и др. Для получения чистой С. применяют пирометаллургическое или электролитическое рафинирование. При пирометаллургическом рафинировании примеси железа и меди удаляют в виде сернистых соединений, вводя в расплав С. антимонит (крудум) - Sb2S3, после чего удаляют мышьяк (в виде арсената натрия) и серу при продувке воздуха под содовым шлаком. При электролитическом рафинировании с растворимым анодом черновую С. очищают от железа, меди и др. металлов, остающихся в электролите (Си, Ag, Аи остаются в шламе). Электролитом служит раствор, состоящий из SbF3, H2SO4 и HF. Содержание примесей в рафинированной С. не превышает 0,5-0,8%. Для получения С. высокой чистоты применяют зонную плавку в атмосфере инертного газа или получают С. из предварительно очищенных соединений - трёхокиси или трихлорида.

Применение. С. применяется в основном в виде сплавов на основе свинца и олова для аккумуляторных пластин, кабельных оболочек, подшипников (баббит), сплавов, применяемых в полиграфии (гарт), и т. д. Такие сплавы обладают повышенной твёрдостью, износоустойчивостью, коррозионной стойкостью. В люминесцентных лампах галофосфатом кальция активируют Sb. С. входит в состав полупроводниковых материалов как легирующая добавка к германию и кремнию, а также в состав антимонидов (например, InSb). Радиоактивный изотоп 12Sb применяется в источниках g-излучения и нейтронов.
 

      Смотрите также

      Электрохимическая коррозия.
        Электрохимическая коррозия         является        наиболее   распространенным типом коррозии  металлов.  По  электрохимическому   механизму коррозируют    металлы    в   контакте   с   растворами ...

      Извлечение сульфит натрия из отходов процесса производства тринитротолуола
      Сточные воды процесса производства тринитротолуола (ТНТ), окрашенные в красный цвет, содержат сульфит натрия, который может быть выделен из раствора. Согласно процессу, разработанному В.Р. ...

      Коллоидная химия
      Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов: 1. Изучение строения и ...