Катализаторы углекислотной конверсии метана
Статьи / Сравнительный анализ: методы получения синтез-газа / Катализаторы углекислотной конверсии метана
Страница 1

Нанесенные никелевые катализаторы.

Наибольшую активность в углекислотной конверсии СН4 проявляют нанесенные никелевые катализаторы. Однако они имеют существенный ─ потеря активности при закоксовывании. Для борьбы с этим явлением применяются разные приемы. Так, в процессе SPARG, разработанном фирмой «Topsoe», углеотложение на никеле подавляется путем пассивации серой. Считают, что сера препятствует образованию больших ансамблей углерода и таким образом ингибирует процесс углеотложения сильнее, чем реакцию (3).

Наименее подвержены влиянию кокса катализаторы, в которых никель нанесен на основные носители. Так, если катализатор Ni/Al2O3 обладает наибольшей активностью в начальный период работы, то катализаторы Ni/MgO, Ni/CaO, Ni/MnO, Ni/ZrO2 превосходят его по эксплуатационным качествам, проявляя устойчивость в отношении коксообразования. Отмечается [10], что углеотложение подавляется, если металл нанесен на носитель с высокой основностью по Льюису. На таких оксидах, как СaO, MgO, TiO2, адсорбированный диоксид углерода реагирует с углеродом по реакции, соответствующей обратной реакции Будуара (8):

Применяют также щелочные добавки к таким носителям, как Al2O3. По-видимому, образование не слишком стабильных карбонатов облегчает их взаимодействие с углеродом.

Несомненный интерес представляет цикл работ японских исследователей по углекислотной конверсии метана на никелевых катализаторах [11─24]. Методом соосаждения солей Ni и Mg была получена система Ni0,03 Mg0,97O, представляющая собой твердый раствор NiO и MgO, которая оказалась близкой по активности к нанесенному катализатору примерно такого же состава 3%NiO/MgO, но со значительно более высокой коксоустойчивостью. Стабильность обоих катализаторов много выше, чем Ni/SiO2 и Ni/Al2O3.

В условиях низких температур (500 °С) отложение кокса на катализаторе Ni0,03Mg0,97O не наблюдается. При 650 °С активность катализатора не снижается в течение 3000 ч. При более высокой температуре (700─900 °С) на нем также практически не обнаруживается

кокс. В условиях катализа весь никель восстанавливается до металлического состояния, при этом металл выделяется в виде высокодисперсных частиц. Каталитическая активность в конверсии СН4 + СО2 коррелирует с количеством наиболее слабо связанного аморфного

α-углерода.

По мнению авторов [11], дезактивация катализатора вызвана не столько углеобразованием, сколько реокислением Ni до NiO. Маленькие частицы Ni, образующиеся в твердом растворе Ni0,03Mg0,97O, восстанавливают СО2 до СО, при этом окисленные частицы NiO в условиях реакции снова восстанавливаются до металлического Ni.

Конверсия смеси СН4 + СО2 на катализаторе Ni0,03Mg0,97O при 850 °С и давлении 0,1─0,2 МПа стабильно составляла 100%, а на катализаторе Ni0,03Ca0,10Mg0,87O ─ 45% [14]. При давлении 1,2 МПа наблюдается углеотложение, которое флуктуирует в ходе работы катализатора. Добавка СаО в этом случае значительно снижает углеобразование (от 330•10─3 г/г катализатора без СаO до 9,5•10─3 г/г катализатора с добавкой СаO).

Промотирование катализатора Ni0,03Mg0,97O благородными металлами (Pt, Pd и Rh) дает максимальный эффект при отношении М : M(Ni + Mg) = 0,021 [15]. На биметаллических катализаторах сильно снижается углеотложение. Кроме того, благородные металлы увеличивают стабильность катализатора при высоких температурах (850 °С).

Страницы: 1 2 3

Смотрите также

Серебро (Argentum), Ag
Серебро - химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси дв ...

Радон (Radonum), Rn
Радон - радиоактивный химический элемент VIII группы периодической системы Менделеева; атомный номер 86, относится к инертным газам. Три a-радиоактивных изотопа Р. встречаются в природе как члены есте ...

Прогнозирование критического давления. Основные методы прогнозирования
...