Волновые функции жёсткого ротатора.Статьи / Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора / Волновые функции жёсткого ротатора.Страница 1
4.3.8.1. Использование операторов сдвигов состояний позволяет также максимально просто найти собственные функций операторов и без каких-либо специальных сведений о дифференциальных уравнениях. Авторы сознательно построили настоящий раздел в расчёте на внимательного читателя-химика, владеющего лишь минимальными, но достаточно прочными навыками в области тригонометрии и математического анализа.
4.3.8.2. Прежде всего, выпишем операторы повышения и понижения в сферических координатах, используя формулы (4.53) и (4.54):
(4.109)
В силу того, что собственные функции, получающиеся в результате действия операторов сдвига, подлежат нормировке, как это уже обсуждалось в разделе 4.3.5.10., мы имеем все основания определить эти операторы с точностью до постоянного множителя, т.е. вместо (4.109) ограничимся выражением
(4.110)
4.3.8.3. Исходные уравнения для вывода всей цепочки волновых функций – уравнения аннигиляции
(4.111)
На основании формул (4.50) и (3.28) функцию можно представить в виде
(4.112)
С учётом этого уравнение (4.111) в сферических координатах: запишется в форме
. (4.113)
Совершим очень несложные преобразования, приводя к дифференциальному уравнению для функции:
откуда следует (4.114)
4.3.8.4. Разделяя переменные, получаем
(4.115)
Учтём что ,
(4.116)
Интегрирование уравнения (4.116) даёт
(4.117)
где – постоянная интегрирования, определяемая из условия нормировки. Окончательно получаем формулу для функции
(4.118)
4.3.8.5.Формула (4.118) дает лишь предельные выражения волновых функций , отвечающие максимальному и минимальному значениям квантового числа m, а именно и , или что то же самое . Все волновые функции, соответствующие промежуточным значениям очень просто получаются последовательным действием операторов с точностью до нормировочных множителей, которые могут быть рассчитаны в каждом конкретном случае
4.3.8.6.Отметим, что мы не ставим перед собой и перед читателем задачу вывода общей формулы сферических волновых функций. Это связано, с одной стороны, с тем, что она обязательно покажется слишком перегруженной индексами и коэффициентами, к которым удобнее привыкать постепенно. С другой стороны, для практических целей редко требуются функции с большими значениями квантового числа l. В химическом обиходе встречается состояния с l = 0, 1, 2, 3, поэтому ограничимся этими значениями, (их символы см. в табл. 4.5 ).
4.3.8.7. Итак, нас будут интересовать s–, p–, d–, f– орбитали жесткого ротатора. Запишем соответствующие исходные функции и , с точностью до постоянного множителя:
для s-состояния и
для p- состояния и
для d- состояния и
для f- состояния и
4.3.8.8. Орбиталь s –типа – лишь одна и волновая пункция требует только нормировки. Поскольку сомножитель уже нормирован, достаточно пронормировать функцию . Выделяя из элемента конфигурационного пространства (см. рис 4.3) все сомножители, определенные на переменной , получаем