Методы получения дисперсных систем
Периодическая система / Методы получения дисперсных систем
Страница 5

Мономолекулярные пленки на поверхности воды могут находиться в трех состояниях: газообразном, жидком и твердом. Жидкие и твердые поверхностные пленки называются также конденсированными.

Если силы, действующие между молекулами в пленке, сравнительно невелики, то молекулы ПАВ свободно распределяются по поверхности воды, максимально удаляясь друг от друга, что обусловливает поверхностное давление, действующее в направлении, противоположном поверхностному натяжению, такую пленку можно считать двумерным газом, так как молекулы этого газа не могут оторваться от поверхности воды и могут двигаться только в двух измерениях. К веществам, образующим на воде двумерные газообразные пленки, относятся, например, жирные кислоты с числом углеводородных атомов от 12 до 20-22, алифатические спирты и амины с не очень большой молекулярной массой.

Если тангенциально действующие силы между углеводородными радикалами молекул ПАВ в поверхностной пленке велики, то молекулы слипаются, образуя крупные конденсированные «острова», в которых тепловое движение молекул затруднено. В таких «островах» молекулы обычно ориентируются параллельно друг другу и перпендикулярно поверхности воды. Следует, однако, заметить, что, например, при повышении температуры конденсированные пленки могут переходить в газообразные.

Конденсированные пленки обычно жидкие, и молекулы в них перемещаются довольно свободно. если же силы взаимодействия между радикалами настолько велики, что молекулы не могут перемещаться, то конденсированные пленки можно рассматривать как твердые. Такие пленки образуют карбоновые кислоты с числом углеродных атомов более 20-24.

О наличии у поверхностных пленок свойств твердого тела можно убедиться, напыляя на поверхность порошок. Если пленка твердая, то при осторожном сдувании порошок остается неподвижным, если жидкая -порошок перемещается по поверхности.

Следует отметить, что помимо газообразных и конденсированных пленок существуют еще так называемые растянутые пленки, занимающие промежуточное положение.

Такие пленки могут образовываться из конденсированных при повышении температуры. Полагают, что в растянутых пленках углеводородные радикалы молекул ПАВ не ориентированы параллельно, а переплетены между собой, лежат «плашмя» на воде, что препятствует неограниченному растеканию пленки, в то время как полярные группы относительно свободно перемещаются в поверхностном слое.

Способность веществ образовывать те или иные пленки для ионогенных ПАВ зависит от рН раствора. Высшие жирные кислоты в кислых и нейтральных растворах (т.е. при практически недиссоциированных группах) при определенной температуре дают на поверхности раздела с воздухом растянутые пленки. При той же температуре в щелочной среде на поверхности раствора образуются газообразные пленки, что обусловлено отталкиванием одноименных зарядов соседних групп, появившихся в результате их диссоциации.

89. Написать формулу строения мицеллы золя, образованного в результате взаимодействия указанных веществ(избытка одного, затем другого вещества): CdCl2 + Na2S; FeCl3 + NaOH. Назвать составляющие компоненты мицеллы.

1) CdCl2 + Na2S

Избыток CdCl2 дает мицеллу:

[ (CdCl2 ) Cd2+ · Cl–]+ x Cl–

зародыш: (CdCl2 )

ядро: [ (CdCl2 ) Cd2+

гранула: [ (CdCl2 ) Cd2+ · Cl–]+

Избыток Na2S дает мицеллу:

[2 (NaCl) 2 Cl– · Na+]– x Na+

зародыш: (NaCl )

ядро: (NaCl ) 2 Cl-

гранула: [ (CdCl2 ) Cd2+ · Cl–]+

2) FeCl3 + NaOH

Избыток FeCl3 дает мицеллу:

[ (FeCl3 ) Fe3+ · 2Cl–]+ x Cl–

зародыш: (FeCl3 )

ядро: (FeCl3 ) Fe3+

гранула: [ (FeCl3 ) Fe3+ · 2Cl–]+

Избыток NaOH дает мицеллу:

[3 (NaCl) 3 Cl– · 2Na+]– x Na+

зародыш: (NaCl )

ядро: 3 (NaCl) 3 Cl–

гранула: [3 (NaCl) 3 Cl– · 2Na+]–

94. Защита коллоидных частиц с использованием ВМС. Механизм защитного действия. Белки, углеводы, пектины как коллоидная защита.

Коллоидная защита – стабилизация дисперсной системы путем образования адсорбционной защитной оболочки вокруг частиц дисперсной фазы. Белки, пектины и углеводы выступают как стабилизаторы дисперсных систем, предохраняющих системы от дальнейшей коагуляции или седиментации.

110. Пены, условия их образования и свойства. Роль пенообразования для продуктов питания и примеры использования пен.

Пены – высококонцентрированные дисперсные системы (объемная доля газа более 60-80%), в которых дисперсная фаза – газ, а дисперсионная среда – жидкость или твердое тело (пенобетон, пеногипс, пенополимеры и т.д.). Пены – грубодисперсные системы, размер пузырьков в которых от 0,01 см до 0,1 см и более. Чаще всего пены с жидкой дисперсионной средой получают диспергированием газа в жидкости в присутствии стабилизатора, который в этом случае называют пенообразователем.

Страницы: 1 2 3 4 5 6

Смотрите также

Теория образования оксидов азота при горении
Условия образования оксидов при горении до сих пор не разработаны в достаточной мере и требуют глубокой проработки весьма сложной химической кинетики процесса в сочетании с детальным изучен ...

Кюрий (Curium), Cm
Назван в честь Пьера и Марии Кюри. Кюрий-242 в виде окиси (плотность около 11,75 и период полураспада 162 дня) применяется для производства компактных и чрезвычайно мощных радиоизотопных источников эн ...

Теория химического строения органических соединений. Электронная природа химических связей. Предпосылки теории строения. Теория химического строения. Изомерия
...