Примеры решения задач
Периодическая система / Методика решения задач по теоретическим основам химической технологии / Примеры решения задач
Страница 4

Решение:

Начнем с дробления: мысленно уменьшаем размеры шара. Вместо одного большого шара - множество футбольных мячей. Или теннисных. Или еще меньше - дробинок, плавающих в жидкости. (На такую «пробку» выдано авторское свидетельство.) Замена жесткой пробки на динамичную соответствует общей тенденции развития технических систем. А если продолжить мысленный эксперимент? Перейдем от дроби к еще более мелким частицам - молекулам. Возникает идея пробки из жидкости или газа. Газовая пробка не сможет быть разделителем: транспортируемая жидкость пройдет сквозь нее. А вот жидкая пробка возможна. Один нефтепродукт, например керосин, затем водяная пробка, а за ней другой нефтепродукт, скажем бензин. У жидкой пробки огромные преимущества: она никогда не застрянет в трубопроводе и свободно пройдет через насосы промежуточных станций. Но и недостаток у этой пробки существенный: нефтепродукты будут проникать в жидкий разделитель, головная и хвостовая части пробки постепенно смешаются с ними. Отделить их от воды трудно, на конечной станции пробку и попавшие в нее нефтепродукты придется выбросить. Но жидкое вещество пробки, прибыв в резервуар на конечной станции, должно само отделиться от нефти. Для этого есть только две возможности: жидкость становится твердым веществом и выпадает в осадок или превращается в газ и улетучивается. Переход в газ заманчивее, так как твердый осадок надо отфильтровывать. Значит, нужно вещество, которое при высоком давлении в нефтепроводе (десятки атмосфер) будет жидким, а при нормальном давлении — газообразным. Кроме того, учтем, что подобное растворяется в подобном. Чтобы пробка не растворялась в нефти, ее нужно изготовить из полярной жидкости, дешевой, безопасной, инертной по отношению к нефтепродуктам. Имея столь подробный перечень примет, нетрудно найти подходящее вещество по справочнику. Всеми интересующими нас качествами обладает аммиак. Пробка из жидкого аммиака надежно разделит идущие по трубопроводу жидкости. В дороге она частично смешается с нефтепродуктами, но это нестрашно: на конечной станции аммиак превратится в газ, в нефть останется в резервуаре.

8.

Для изготовления листового стекла раскаленную стеклянную ленту подают на конвейер. Лента перекатывается с одного металлического ролика на другой, постепенно остывая. При этом не застывшая еще стеклянная лента прогибается, на стекле образуются неровности, поэтому его приходится долго полировать. Впервые столкнувшись с этой проблемой, инженеры предложили сделать ролики как можно тоньше, чтобы стеклянная лента получалась ровнее. Но чем тоньше ролики, тем сложнее изготовить из них огромный - в десятки метров — конвейер. Если толщина ролика равна толщине спички, на каждый метр конвейера потребуются 500 роликов и устанавливать их придется прямо-таки с ювелирной точностью. Как усовершенствовать процесс изготовления листового стекла?

Решение:

Попробуем опять применить принцип дробления. Уменьшаем диаметр роликов. Минимальная толщина — один атом. Раскаленная стеклянная лента движется по слою шариков-атомов. Отличный конвейер, идеально ровный.

Итак, под стеклянную ленту надо насыпать шарики-атомы. Это не могут быть атомы газа (они сразу улетучатся) или твердого тела (они не будут свободно двигаться). Остается одна возможность — использовать атомы жидкости. Какую жидкость взять для такого конвейера? Не будем искать наугад, используем знания по химии (или хотя бы справочники). Прежде всего, нужна жидкость легкоплавкая, но у нее должна быть высокая температура кипения, иначе она легко закипит, и поверхность стекла покроется пузырьками. Плотность жидкости должна значительно превышать плотность стекла (2,5 г/см3), иначе стеклянная лента не будет держаться на ее поверхности. Итак, искомое вещество имеет температуру плавления не выше 200-300°С, температуру кипения не ниже 1500 °С, плотность не менее 5-6 г/см3.

Страницы: 1 2 3 4 5 6

Смотрите также

Кальцинация гидрокарбоната
...

Разработка методов синтеза SnF2
Основной путь получения SnF2 – взаимодействие SnO и фтористоводородной кислоты [5] с последующим выпариванием и сушкой. Специфика технологии олова и его соединений такова, что первичным продуктом пе ...

Введение
Развитие современного машиностроения невозможно без решения многих проблем в области полимерного материаловедения, играющих роль в обеспечении надежности и долговечности машин и механизмов, приборо ...