Металлические стекла
Периодическая система / Металлы и сплавы / Металлические стекла
Страница 3

Была поставлена задача получить без­дефектные и достаточно крупные метал­лические монокристаллы. Однако она не решена до сих пор. Правда, удалось вырастить тонкие, в несколько десят­ков микрон, и длиной до полутора сан­тиметров почти бездефектные кристаллы некоторых металлов. Их прочность дей­ствительно оказалась во много раз выше обычной. Из таких “усов” были даже из­готовлены высокопрочные композиты. Но дальше лабораторий дело пока не пошло: скорость роста “усов” оказалась слишком низкой, а потому цена - слиш­ком высокой.

Третья попытка совершить револю­цию в металлургии делается сегодня.

Четверть века назад эксперименты по быстрому охлаждению металлических расплавов которые проводились с целью получения субмикроскопической структуры металла, обнаружили, что в некоторых случаях кристаллическая решетка в металле вообще отсутствует, а расположение атомов характерно для бессструктурного, аморфного тела. Это не было неожиданностью: твердые аморфные тела - стекла получают путем переохлаждения жидкого расплава. Правда, для образования обычных стекол достаточно очень небольшой скорости охлаждения. Для металлов же, чтобы опеределить кристаллизацию, необходимы гро­мадные скорости охлаждения - миллионы градусов в секунду. Такая скорость была достигнута, когда порции расплавленного металла выстреливали в воду, - получались частицы с аморфной, стеклообразной структурой.

Неожиданным оказалось другое: у аморфного металла совсем другие, не сходные свойства с металлом кристаллическим. Нет, металл остается металлом, со всеми характерными для него свойствами – блеском, электропроводностью и т.д. Но он становится в несколько раз прочнее, повышается стойкость к коррозии, меняются электоромагнитные характеристики и даже одна из самых устойчивых констант - модуль упругости. Но главное достоинство нового материала заключается в том, что в нем прекрасно соединяются, уживаются все необходимые компоненты. При сверхбыстром охлаждении сплав затвердевает, прежде чем компоненты- антагонисты успевают про­явить свой антагонизм.

Аморфные сплавы получили название металлических стекол. Интерес к ним стремительно возрастает Сейчас ставится задача не только получать спла­вы с новыми свойствами, но и создавать их промышленную технологию. А здесь еще очень много нерешенных проблем. Первым из полученных металлических. стекол был сплав Аu—Si. Затем удалось получить в аморфном состоянии не толь­ко сплавы, но и, некоторые чистые ме­таллы — от Gе, Те и Вi до ярко выра­женных А1, V, Сг, Fе, Ni и других. Для этого потребовались фантастиче­ские скорости охлаждения - до 1010 К/с. Однако аморфное состояние металла оставалось не устойчивым – при нагреве начиналась кристаллизация. Необходи­мо было найти сплавы с разумными скоростями охлаждения и температурой, с устойчивой аморфной структурой.

На основании этих теоретических представлений металлурги составляют сейчас аморфные сплавы, получая превосходные практические результаты. Уже есть металлические стекла, у которых критическая скорость всего лишь 100 - 200 К/с, а температура стеклования в несколько раз меньше температуры плав­ления основного компонента. Таковы, например двойной сплав Pd80Si20, с двадцатипроцентной добавкой кремния сплавы Ni80P20, Fe80B20, Au81Si19 и многие другие. Нетрудно заметить, что общее содержание металлоидов во всех этих сплавах около 20 %. Какие же свойства металлических стекол особенно ценны для современной техники?

Прежде всего исследователей заинте­ресовали ферромагнитные свойства сплавов на основе железа, никеля и ко­бальта. Металлургия готовит для промышленности сотни тысяч тонн специ­альных электротехнических сталей и сплавов в виде тонкого листа. Из них 95 % составляют армко-железо, динамные и трансформаторные стали. Из листа набираются сердечники электродвигате­лей и генераторов, трансформаторов и магнитопроводов. Материалы для сер­дечников электромашин называют магнитомягкими. Они должны обладать вы­сокой магнитной проницаемостью, высо­кой индукцией насыщения, значитель­ным удельным электросопротивлением. Это чрезвычайно важно для снижения потерь на гистерезис и вихревые токи, для повышения к.п.д. электрических ма­шин.

Трансформаторные и другие элект­ротехнические стали - это сплав желе­за с кремнием. Причем больше 4 % кремния добавлять нельзя, но и при этом металл получается хрупким, плохо про­катывается, легко теряет столь необхо­димые магнитомягкие свойства. В ре­зультате потери в сердечниках обычно достигают 0,3-1 %, падает к.п.д. Прав­да, есть еще и более магнитомягкие ма­териалы. Это пермаллои - сплавы на ос­нове железа и никеля, которые приме­няются в магнитофонных головках и других точных приборах. Однако они в десятки раз дороже стали и тоже легко теряют свои свойства при обработке или перегреве. А магнитомягкие свойства ме­таллических стекол оказались на уровне пермаллоев лучших марок, притом эти свойства более стойки и стабильны.

Страницы: 1 2 3 4

Смотрите также

Теория электролитической диссоциации
...

Коллоидная химия
Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов: 1. Изучение строения и ...

Химия воды и микробиология
...