Математическая обработка результатов анализа
Периодическая система / Математическая обработка результатов анализа и оценка их качества / Математическая обработка результатов анализа
Страница 2

результатов, т.е. получение одинаковых или близких результатов при повторных определениях. Количественной характеристикой воспроизводимости является стандартное отклонение

S, которое находят методами математической статистики. Для небольшого числа измерений (малой выборки) при n=1-10

.

Выборной

называют совокупность результатов повторных измерений. Сами результаты называют вариантами выборки

. Совокупность результатов бесконечно большого числа измерений (в титровании n>30) называют генеральной выборкой

, а вычисленное по ней стандартное отклонение обозначают s. Стандартное отклонение S(s) показывает, на какую в среднем величину отклоняются результаты n измерений от среднего результата x или истинного m.

Квадрат величины стандартного отклонения S2(s2) называют дисперсией результатов измерения. Она показывает среднеквадратичное отклонение результатов повторных измерений от среднего x или истинного значения m.

В процентах воспроизводимость оценивают по величине относительного

стандартного отклонения:

Обычно считают при S = 1…5% воспроизводимость результатов измерения хорошей, при S = 5…10% - удовлетворительной, при S > 10…15% - плохой, хотя эта шкала воспроизводимости условна и зависит от метода анализа.

В соответствии с теорией погрешностей (ошибок) известная величина S позволяет утверждать, что в 68 случаях из 100 случайная погрешность < ± 1S, в 95 из 100 < ± 2S, а в 99 из 100 < ± 3S.

Отношение числа случаев, в которых происходит некоторое событие, к общему числу рассматриваемых случаев называется доверительной вероятностью (статистической надежностью)

Р. Для вышеуказанного Р составляет: 0,68 (68%), 0,95 (95%), 0,99 (99%). Обычно при оценке экспериментальных данных принимают Р = 95%.

Пользуясь найденным значением S как критерием, можно выявить промахи (когда Q-критерий близок к Qтабл) при условии , а также оценить надежность

полученного единичного или среднего результата анализа. Под ее оценкой понимают нахождение доверительных границ

результата анализа, т.е. границ интервала значений вокруг единичного или среднего результата, внутри которого с заданной при расчетах доверительной вероятностью можно ожидать нахождение истинного значения результата. Интервал, ограниченный этими границами называется доверительным:

,

где - коэффициент распределения Стьюдента, табулированный при заданном Р и степени свободы К = n-1. Таблица со значением tк,р приводится в аналитических справочниках. Данные этой таблицы свидетельствуют о том, что чем меньше n и больше P, тем больше tк,р, а, следовательно, шире доверительный интервал и меньше надежность результата анализа. Величина tк,р особенно резко падает при увеличении n до пяти параллельных измерений. Дальнейшее увеличение n ведет к менее интенсивному уменьшению tк,р и сужению доверительного интервала. Например, при Р = 95% и двух, пяти и десяти параллельных измерениях коэффициент Стьюдента соответственно равен 12,71; 2,78; 2,26, а доверительный интервал X ± eкр. составляет ±9S, ±2,5S, ±1,6S. Поэтому для получения надежных результатов необходимо делать не менее пяти повторных измерений. При представлении (записи) конечного результата анализа доверительный интервал показывают двумя числами X ± e к, р, указывая обязательно n и Р, при которых он вычислен.

Страницы: 1 2 3 4

Смотрите также

Родий (Rhodium), Rh
Родий — химический элемент с атомным номером 45 в периодической системе, обозначается символом Rh (лат. Rhodium), белого цвета. Твёрдый переходный металл, благородный металл. Родий — твёрд ...

Технология получения высокоочищенного хитозана из панцирей ракообразных
...

Коллоидная химия
Предметом физической химии является объяснение химических явлений на основе более общих законов физики. Физическая химия рассматривает две основные группы вопросов: 1. Изучение строения и ...