Озон
Материалы / Озон
Страница 2

2. История открытия.

Впервые озон обнаружил в 1785 голландский физик М. ван Марум по характерному запаху (свежести) и окислительным свойствам, которые приобретает воздух после пропускания через него электрических искр. Однако как новое вещество он описан не был, ван Марум считал, что образуется особая «электрическая материя».

Термин озон предложен немецким химиком X.Ф. Шёнбейном в 1840, вошёл в словари в конце 19-ого века. Многие источники именно ему отдают приоритет открытия озона в 1839.

3.Физические свойства.

Озон — газ, обладающий синим цветом, который можно заметить, если смотреть через значительный слой, до 1 метра толщиной, озонированного кислорода. По способности обращаться в жидкое состояние озон близок к углекислоте; но так как он всегда смешан со значительным объемом кислорода, то сжижение его довольно затруднительно. Подвергнув сильному сжатию в аппарате Кальете при сильном охлаждении [Эту операцию должно производить с осторожностью, потому что быстрое сжатие может вызвать повышение температуры газа, и тогда произойдет взрыв: озон превратится в кислород.], причем газ принял индигово-синий цвет, а ртутный мениск сделался стально-синим вследствие окисления, Готфейль и Шаппюи получили капли жидкого озона — после того, как быстро уменьшили давление. Ольшевский произвел сжижение в аппарате Вроблевского, охлаждая кипящим при обыкновенном давлении жидким кислородом. Жидкий озон. обладает густым синим цветом; прозрачен в слое, не превышающем 2 мм. толщины; кипит при —106° (при атмосферном давлении) и довольно прочен — не разлагается в запаянной трубке даже при комнатной температуре при соприкосновении с этиленом очень сильно взрывается. Озон значительно более кислорода растворим в воде, в 15 раз приблизительно (Mailfert); а именно при 0° в 1 литре растворяется 0,0394 гр., в то время как в 1 литре газа над этим раствором остается 0,0615 гр.; при 60° растворения не происходит (0,0 гр. и 0, 0123 гр.). Водный раствор озона обладает его запахом; при стоянии выделяет неизмененный озон, который способен ко всем реакциям, свойственным газообразному озону.

4. Xимuчecкие свойства.

Химические свойства озона определяются его большой способностью к окислению. Он быстро действует на многие металлоиды и на большую часть металлов; очень чувствительна реакция на ртуть; один пузырек озонированного кислорода, содержащего 2% по объему озона, изменяет явственно физические свойства нескольких фунтов ртути, которая теряет тогда свой блеск и начинает прилипать к стеклу; даже серебро окисляется озоном, покрываясь черным слоем перекиси. Обыкновенно при окислении объем газа не меняется: один атом идет на окисление, а два других образуют частицу обыкновенного кислорода: O 3 + X = O2 + XO.

Озон превращается в обыкновенный кислород также при соприкосновении с некоторыми порошкообразными телами, например с перекисью марганца, с платиновой чернью, при встряхивании с размельченным стеклом. В присутствии влажного озона фосфор окисляется в фосфористую кислоту, сернисто-кислые соли в сернокислые, желтая соль в красную, белковые вещества разрушаются, а также и другие органические вещества — каучук, бумага и пр. [Ввиду этого обстоятельства для составления приборов при работе с озоном нельзя брать каучуковых пробок, трубок, различных мастик и пр.; приходится пользоваться одним стеклом, спаивая его или пришлифовывая; из жидкостей для запирания озон лучше всего употреблять крепкую серную кислоту, как это делается при устройстве смывания отводной трубки озонизатора Бертло с другой газоотводной трубкой большего диаметра: отводная трубка направлена кверху и конец её окружен еще более широкой трубкой, припаянной внизу к отводной трубке, в образовавшееся таким образом кольцеобразное пространство наливают кислоты и погружают в нее присоединяемую трубку; трубка-муфта может быть укреплена на отводной трубке и при помощи пробки, но тогда в кольцеобразное пространство нужно сначала налить немного ртути, чтобы защитить пробку от кислоты, а затем уже этой последней.]. Аммиак превращается в азотистокислый аммоний, который виден в виде белого дыма, если по каплям вливают нашатырный спирт в сосуд, содержащий озон. При прохождении озонированного кислорода через раствор индиго происходит быстрое обесцвечивание, а раствор йодистого калия с примесью крахмального клейстера синеет. Большей, сравнительно с кислородом, способностью к окислению озона обязан той затрате электрической энергии, которая необходима для его возникновения; энергия, которая является скрытой в озоне, равна, в теплотных единицах на 48 гр. его, 29,6 (Бертло), а по другим опытам (Ван-дер-Мёлен) 36,2 больших калорий [Именно Бертло определил в калориметре теплоту окисления озона мышьяковистой кислоты в мышьяковую — в водном растворе (aq); было найдено: As 2O3.aq + 2O3 = As2O5.aq + 2O2 + 2.68,8 б. к., так как окисление кислородом, непосредственно не происходящее, может быть выражено, на основании опытов Томсена, уравнением: As 2O3.aq + O2 = As2O5.aq + 2.39,2, то теплота разложения озона выразится так: 2O 3 = 3O2 + 2.29,6. Ван-дер-Мёлен определил теплоту разложения О. под влиянием платиновой черни.]. Вопрос о нахождении озона в атмосфере до сих пор считается некоторыми химиками не вполне решенным. Условия для образования его в природе несомненно имеют место — тихий разряд между облаками и землей, процессы медленного окисления (при гниении, при действии воздуха на вещества растительного происхождения, подобные скипидару), испарение воды [Поблизости соляных градирен, вообще в местах, где происходит испарение значительных количеств воды при обыкновенной температуре, всегда замечается (Горуп Безанец) в атмосфере присутствие озона или, быть может, другого окисляющего вещества, например перекиси водорода.]; в присутствие его верят, объясняя некоторые процессы, например беление влажного холста на солнце, засыхание масляной краски, чему способствует прибавление скипидара, и пр. действием образующегося, по мере потребления, озона; но непосредственные определения дают, вообще говоря, не вполне достоверные результаты. Дело в том, что различные способы открытия озона по его способности окислять могут указывать не только на его присутствие, но и на присутствие других окислителей — перекиси водорода, окислов азота и, быть может, иных подобных веществ, еще неизвестных. Особенно трудно отличить озон от перекиси водорода, которая во всех случаях действует сходно с ним, за исключением отношения к металлическому серебру; последнее перекисью водорода не изменяется, а при действии озона покрывается черным слоем окисла. Но эта реакция может открыть только более или менее значительные количества озона и для открытия его в атмосфере не годится, потому что здесь его всегда мало; если даже допустить, что источники образования озона в природе многочисленны, то, конечно, и случаи потребления не менее разнообразны. Перекись водорода в том разведенном состоянии, как она находится в атмосфере, не действует (Шёне) на обыкновенную йодокрахмальную бумажку (нужно смочить ее еще раствором железного купороса), а озон действует и без купороса [Если пропустить воздух, содержащий пар перекиси водорода и озона, над хромовым ангидридом, то протекший воздух делается свободным от перекиси водорода, а озон проходит без изменения и, следовательно, может быть открыт йодокрахмальной бумажкой (Энглер и Вильд, 1896 г.).]. Так как при действии озона на йодистый калий образуется едкое кали, то, употребляя среднюю лакмусовую бумажку, смоченную раствором KI (Гузо), можно видеть окрашивание и такой бумажки в синий цвет: окислы азота (и хлор) действуют на KI без возникновения свободной щелочи. Зенгер, пропустив 100 литров воздуха через разбавленную йодисто-водородную кислоту, определил количество свободного йода, которое оказалось соответствующим 0,001 — 0,002 миллиграмма озона. Обычный метод сравнительного определения количества атмосферного озона более груб: выставляют на определенное время йодокрахмальную бумажку на воздух (лучше всего в темноте) и сравнивают степени окраски, которую она приняла, с установленной опытом шкалой окрасок; йодокрахмальная бумажка вследствие этого приобрела название — "озонометрическая бумажка". Бумажки, пропитанные закисью таллия, буреющие, вследствие образования окиси, в присутствии озона и неизменяемые окислами азота (Бёттгер), годны только для качественного открытия (Лами). Э. Б. Шёне (1894) воспользовался спектром поглощения озона, который состоит из 13 более или менее интенсивных полос, для определения его в воздухе; оказалось, что низшие слои утром содержат меньше озона, чем вечером, что в феврале и марте содержание его достигает maximum'a, затем происходит падение до minimum'a, имеющего место в июле, после того идет медленное, до декабря, и затем быстрое возрастание; во время гроз и сильных дождей спектроскоп никогда не открывает озон.; высшие слои атмосферы вероятно богаче им (Гартлей, Шёне). В атмосфере больших городов озон, как и других подобных окислителей, почти совсем не имеется — здесь слишком велико потребление его для окисления всевозможных веществ, присутствие которых в достаточной мере всегда заметно и отравляет жизнь в городе; вне городов присутствие озона почти всегда может быть открыто, в особенности в морском воздухе, иной раз даже по запаху. В последнее время озонированный кислород или воздух начинает получать значение и в технике. Здесь, прежде всего, должно указать на беление полотна искусственно полученным озоном, вместо беления на солнце, причем значительно выигрывается время (7 часов вместо 4 дней); посредством озона очень просто и быстро делают водку "старой", годной к употреблению в качестве таковой, а также для приготовления ликеров; точно также табаку озон придает приятный запах и вкус; обработка озоном дерева увеличивает его способность звучать, что применяется при выделке роялей.

Страницы: 1 2 3 4 5 6 7

Смотрите также

Комплексные металлоорганические катализаторы
...

Серебро (Argentum), Ag
Серебро - химический элемент I группы периодической системы Менделеева, атомный номер 47, атомная масса 107,868; металл белого цвета, пластичный, хорошо полируется. В природе находится в виде смеси дв ...

Получение хлорида гексааминникеля
...