Основные закономерности процесса графитации углеродного волокна
Периодическая система / Композиционные хемосорбционные волокнистые материалы "Поликон К", наполненные углеродными волокнами / Основные закономерности процесса графитации углеродного волокна

Графитация — завершающая стадия технологического процесса, на которой углеродное (карбонизованное) волокно подвергается высокотемпературной обработке при 1800—2500 °С. Графитация является энергоемким и сложным процессом, удорожающим волокно, поэтому в зависимости от требований к материалам и областей его применения конечным продуктом могут быть углеродное и графитовое волокна.

При графитации главным образом протекают структурные превращения, и соответственно изменяются свойства материала. На этой стадии происходит обогащение волокна углеродом до содержания его не менее 99%; потеря массы волокна составляет 5—15%, и если волокно находится в свободном состоянии, то оно усаживается на 3—6%. Видимо, основными продуктами распада являются углеводороды и СО. В процессе графитации происходят дальнейшая ароматизация углерода и совершенствование структуры. Глубина протекания этих процессов и изменение свойств волокна зависят от параметров графитации. К важнейшим из них относятся: среда, температура, продолжительность и вытягивание.[3]

В условиях высоких температур защитной средой может служить азот или аргон. По экономическим соображениям, видимо, используется азот с минимальным содержанием в нем кислорода.

Несмотря на большую жесткость системы, при столь высоких температурах (1800—2500 °С) физико-химические и структурные превращения во время графитации завершаются за очень короткое время. По данным, графитация заканчивается за несколько секунд, поэтому ее продолжительность определяется техническими возможностями оборудования.

На первом этапе развития производства карбонизация и графитация проводились в свободном состоянии, и волокно значительно усаживалось. В этих условиях получается волокно несовершенной структуры, приближающееся к стеклоуглероду, с низкими механическими свойствами (прочность 700—800 МПа, модуль Юнга 50—60 ГПа). Следующим этапом явилось применение вытягивания при получении УВ, что привело к совершенствованию структуры и значительному улучшению механических свойств волокна. Анализ литературных данных показывает, что для получения волокна высокого качества вытягивание необходимо проводить на стадии карбонизации и графитации.

При графитации с одновременным вытягиванием четко проявляется роль температуры: с ее повышением модуль Юнга возрастает. Осуществление вытягивания на обеих стадиях термообработки позволило получить УВ (волокно торнель 50) с прочностью около 2 ГПа и модулем Юнга 350 ГПа, а в лабораторных условиях (торнель 100) с прочностью 3,5 ГПа и модулем Юнга 703 ГПа .[6]

В заключение следует отметить, что УВ на основе ВВ с высокими механическими показателями получают при проведении графитации с вытяжкой в условиях очень высоких температур (не менее 2800°С). Практически это осуществить довольно трудно. Тот же эффект, но при более низких температурах получается, если в качестве предматериала использовать ПАН волокно. Поэтому целесообразнее при производстве высокопрочного высокомодульного волокна применять ПАН волокна.[3]

Смотрите также

Алхимический рецепт
Перед вами алхимическая формула, содержащаяся в трактате Майкла Скотта «Об алхимии». «Медибибаз, сарацин из Африки, некогда превращал свинец в золото (следующим образом). Возьмите свинец и расплавь ...

Стронций и рубидий. Сравнительный анализ свойств
Рубидий и стронций стоят рядом в Периодической таблице Д. И. Менделеева, а значит, имеют сходные свойства. Однако, один является щелочным металлом, а другой щелочноземельным. И своим вн ...

Иммобилизованные соединения
Иммобилизация – это закрепление вещества на поверхности носителя (матрицы). Методы иммобилизации: - Физическая мобилизация представляет собой включение вещества в такую среду, в которо ...