Основное содержание работы
Материалы / Механизм и кинетика переходных процессов на межфазных границах электрохимических преобразователей энергии на основе низкотемпературных твердых электролитов / Основное содержание работы
Страница 3

Таким образом, иод не может быть подходящим катодным материалом для элементов постоянной готовности с твердым электролитом СиД, т. к. скорость химического разложения электролита йодом сравнительно велика и продукты реакции имеют низкую ионную проводимость. Поэтому более целесообразны резервные элементы, приводимые в рабочее состояние непосредственно перед использованием путем электрохимического разложения электролита, при котором на одном из электродов выделяется медь, а на другом – йод.

В третьей главе приведены результаты исследования электродных реакций на медном электроде в электролите СШ при различных потенциалах.

Механизм и кинетика электродного процесса при потенциалах вблизи равновесного. В условиях массового производства активных масс для медного электрода и самих электродов трудно предотвратить образование оксидов на поверхности меди вследствие чрезвычайно высокой склонности меди к окислению. Можно предположить, что в этих условиях слой оксидов на поверхности меди будет практически всегда и вопрос лишь в толщине слоя. Поэтому основной задачей данной части работы было выяснение причины высокой поляризуемости медного электрода путем исследования влияния слоя оксидов на механизм и кинетику электродного процесса.

При температурах менее 500 °С на меди образуется закись меди Cu. Прямые измерения толщины слоя оксида в условиях, аналогичных нашим, дают около микрона. По литературным данным, в процессе дальнейшего отжига на поверхности закиси меди образуется окись меди СиО. Это приводит к возникновению в закиси меди электронных дырок и вакансий меди. Подвижность вакансий меди при комнатной температуре на несколько порядков величин меньше, чем подвижность дырок. Поэтому закись меди имеет чрезвычайно низкую ионную проводимость и является полупроводником типа. Поэтому при отжиге некоторое количество атомов металлической меди переходит из электрода в закись меди с образованием Си+ и подвижных электронов. Эти ионы занимают вакансии в решетке окисла, а электроны ассоциируют с дырками. Следовательно, в закиси меди около медного электрода образуется область, обедненная дырками.

В то же время твердый электролит СиД всегда содержит некоторое количество Си2*, поэтому на границе СиО/СиД может протекать реакция (5) генерации – рекомбинации дырок.

Отсюда следует, что медный электрод в электролите СиД в данных условиях по сути является полупроводниковым, т. к. реакция в электронной подсистеме идет на границе Си0/СиД, а медная подложка является лишь контактом.

Как видно начальные участки гальваностатических кривых границы СиО/СиД в координатах (15) близки к прямым при 8…10 мВ. Следовательно, как и в случае стеклоуглеродного электрода, скорость электродного процесса лимитируется замедленной диффузией Си в электролите.

При ф > 8…10 мВ гальваностатические кривые не соответствуют (0), причем эффективное сопротивление границы уменьшается. По-видимому, в этих условиях слой Cu0 разрушается. При этом осуществляется непосредственный контакт меди с электролитом, ячейка (27) превращается в ячейку (1) и появляется возможность для протекания реакции (4) с участием меди.

Из литературных данных оценена величина напряженности электрического поля Е = U/d, при которой происходит разрушение. Эта величина равна 4x102 В/см. При напряжении U = 10 мВ и при указанном Е толщина слоя Cu20 составляет около микрона. Расчетная величина толщины одного порядка с известными результатами прямых измерений.

Таким образом, слой закиси меди Cu20 на границе раздела медного электрода с CU4RDCI3I2 блокирует протекание электрохимической реакции в ионной подсистеме с участием меди. Поэтому медный электрод при низких перенапряжениях ведет себя как индифферентный и на нем протекает только реакция (5) в электронной подсистеме.

Страницы: 1 2 3 

Смотрите также

Циклоалканы – органические соединения
...

Кинетика химических реакций
Кинетика химических реакций, учение о химических процессах — о законах их протекания во времени, скоростях и механизмах. При исследовании химических реакций, в частности, используемых в хим ...

М.В.Ломоносов
Михаил Васильевич Ломоносов – русский ученый-энциклопедист. (1711-1765)            Сын крестьянина-помора, выходец из глухой деревушки Архангельской губернии, Ломоносов с огром ...