Получение палладия
Периодическая система / Комплексы палладия / Получение палладия
Страница 1

Применение комплексов палладия начинается с процесса получения этого металла. Палладий выделяют из руды путём растворения в царской водке с образованием тетрахлоропалладиевой кислоты. В присутствии азотной кислоты также образуются нитрозохлоридные соединения платиновых металлов, которые выпадают в виде желтого осадка. Образование нитрозохлоридных соединений протекает по реакциям [7]:

H2[PdCl4] + 2NOCl = (NO)2[PdCl4] + 2HCl

Если нитрозохлоридные соединения не разрушать, то они будут оставаться в нерастворимом остатке. Разрушение их осуществляется нагреванием раствора с добавлением воды при температуре 105–110 оС в результате протекания следующих реакций:

(NO)2[PdCl4] + H2О = H2[PdCl4] + NO+ NO2

Чтобы перевести весь Pd(IV) в Pd(II), проводят "доводку". Доводка осуществляется так: раствор при температуре 120–125 оС упаривается до плотности 1.38, затем обрабатывается 15%-ным этиловым спиртом, расход которого – 250–300 мл на 200 кг шлиховой платины. Этиловый спирт расходуется на процесс восстановления по следующей реакции:

6H2[PdCl6] + C2H5OH + 3H2O = 6H2[PdCl4] + 2CO2+ 12HCl

Палладийорганические соединения - важные промежуточные продукты во многих органических реакциях, катализируемых соединения Pd. К ним относят окисление олефинов, олигомеризацию олефинов, диенов и ацетиленов, карбонилирование, винилирование, ацетоксилирование, изомеризацию и другие палладийорганические соединения используют в орг. синтезе для образования связей С—О, С—Hal, С—N, С—S, С—Si. Некоторые палладийорганические соединения - эффективные катализаторы, например, при карбонилировании аллилгалогенидов (аллильные комплексы), при линейной димеризации и тримеризации бутадиена, ацетилировании олефинов и аллена.

Аффинаж палладия проводят слежующим образом. Палладиевый раствор упаривается в котлах при температуре 110–120 оС. В раствор постепенно вводится аммиак. Перед введением аммиака палладий в растворе находится в виде тетрахлоропалладата(II) аммония (NH4)2[PdCl4]. В том случае, если аммиак вводится в избытке, то должна протекать конечная реакция:

(NH4)2[PdCl4] + 4NH3 = [Pd(NH3)4] Cl2 + 2NH4Cl.

В действительности аммиак прибавляется постепенно, и поэтому первоначально часть палладия переходит в тетраамминпалладий(II), а другая часть палладия – остается в форме тетрахлоропалладат(II) – иона. Эти комплексы взаимодействуют друг с другом с образованием нерастворимой соли Вокелена состава [Pd(NH3)4] [PdCl4] по реакции:

(NH4)2[PdCl4] + [Pd(NH3)4] Cl2 = [Pd(NH3)4] [PdCl4] + 2NH4Cl.

При дальнейшем добавлении аммиака соль Вокелена растворяется с образованием тетраамминпалладий(II) дихлорида:

[Pd(NH3)4] [PdCl4] + 4NH3 = 2 [Pd(NH3)4] Cl2.

К полученному раствору постепенно прибавляется соляная кислота: при этом выпадает светло-желтый кристаллический осадок транс-дихлородиамминопалладия(II), или палладозоамин:

[Pd(NH3)4] Cl2+ 2HCl = [Pd(NH3)2Cl2] + 2NH4Cl.

Соль мало растворима в воде и в отличие от цис-изомера более светлого цвета.

Кроме этих реакций, при добавлении аммиака протекает взаимодействие комплексов родия(III) и хлорида железа(III) с аммиаком по реакциям:

(NH4)3[RhCl6] + 3NH4OH = Rh(OH)3 + 6NH4Cl

FeCl3 + 3NH4OH = Fe(OH)3 + 3NH4Cl

Гидраты выпадают в осадок, а медь остается в растворе в виде комплекса:

CuCl2 + 4NH4OH = [Cu(NH3)4] Cl2 + 2H2O

Обработка аммиаком производится в котлах при температуре 75–85оС, осаждение палладозоамина – на холоду. В процессе осаждения палладозоамина соляной кислотой гидраты растворяются, а комплексы разрушаются и не мешают осаждению содержащего аффинируемый металл вещества. Количество соляной кислоты не должно быть очень большим, т. к. палладозоамин может снова перейти [Pd(NH3)2Cl2]+ 2HCl = (NH4)2[PdCl4].

Страницы: 1 2

Смотрите также

Исследование условий возникновения колебательного режима в процессе окислительного карбонилирования фенилацетилена
...

Масс-спектрометрический метод анализа
Масс-спектрометрию описывали как мельчайшие весы в мире, не из-за размера масс-спектрометра, но из-за того, что он взвешивает – молекулы. За последнее время масс-спектрометрия претерпела по ...

Сурьма (Stibium), Sb
Сурьма - химический элемент V группы периодической системы Менделеева; атомный номер 51, атомная масса 121,75; металл серебристо-белого цвета с синеватым оттенком. В природе известны два стабильных из ...