Изменения, происходящие при нагревании глинистых минералов
Материалы / Химический анализ силикатов и керамики / Изменения, происходящие при нагревании глинистых минералов

Каолинит.

На кривой нагревания каолинита имеются четыре термических эффекта: один эндотермический при 450-600 ˚С и три экзотермических при 900-950, 1150-1300, и 1210-1320 ˚С. В некоторых породах встречается каолинит с максимумом эндотермического эффекта около 700˚С - результат суммарного влияния совершенства структуры кристаллов и стопкообразности их сростков. На кривых нагревания некоторых отечественных огнеупорных глин максимум эндотермического эффекта наблюдается при 600-660˚С.Эндотермический эффект обусловлен дегидратацией каолинита. По этому вопросу существует полное согласие исследователей. Однако о продуктах дегидратации каолинита существуют различные мнения. Ряд авторов считает, что при обезвоживании каолинит распадается на оксиды. По данным, после дегидратации образуется метакаолинит, в котором сохранены связи между алюминием и кремнием. Исследования показывают, что сохранение связей между алюминием, кремнием и кислородом после дегидратации вполне возможно. Это доказывается тем, что после потери воды глинистые минералы способны вновь гидратироваться. В работе показано, что метакаолинит сохраняет правильную структуру в двух измерениях a

и b , но теряет правильное расположение слоев в третьем измерении. Таким образом, слоистая структура каолинита в метакаолините сохраняется, хотя и в несколько видоизмененной форме. Электронно -микроскопические исследования показывают, что после обезвоживания сохраняются некоторая степень кристалличности и что метакаолинит связан структурной преемственностью с исходным материалом. Ещё В. И.Вернадский установил, что при дегидратации глинистое вещество превращается в ангидрид без распадения на свободные окислы. Он же указывал и на то обстоятельство, что каолинит после дегидратации приобретает плотность смеси свободных окислов (3, 08 г/ см³). С кристаллохимической точки зрения невозможно представить себе, что в процессе обезвоживания сложной слоистой структуры происходил полный распад на свободные окислы, тем более что в этой структуре еще сохраняются следы воды и при более высоких температурах. Таким образом, большинство исследователей считает метакаолинит промежуточной фазой при переходе в процессе нагревания каолинита в муллит. Однако из-за сложности исследования эту фазу представляют различно. Считают, что в метакаолините атомы алюминия имеют четвертную координацию к кислороду и переходят в шестерную после нагревания до 1024˚С. Метакаолинит имеет видимую аморфную структуру, но общий контур кристаллического строения сохраняется. Для метакаолинита характерно, что дегидратация не сопровождается повышением сорбционной способности. Согласно исследованию, сетка кремнекислородных тетраэдров решетки каолинита остаётся в метакаолините в значительной степени неизменной, её искажённость, наблюдаемая в решётке каолинита, сохраняется и может при дегидратации увеличиваться. При нагревании каолинита выше 700º наблюдается первый экзотермический эффект с максимумом примерно при 925ºС.В отличие от эндотермического экзотермический эффект лежит в довольно узком интервале температур – 900 – 950ºС. По поводу причины первого экзотермического эффекта мнения разноречивы. Считают, что при температуре указанного экзотермического эффекта образуется γ - Al2O3. выдвигается точка зрения, согласно которой в серии превращений каолинит – муллит происходит образование не шпинели γ -Al2O3, а шпинели алюмосиликатного состава Al4Si3O12. Эта точка зрения нашла признание и подтверждение. Однако гипотеза образования алюмосиликатной шпинели встречает возражения. В метакаолините в связи с наличи-ем остаточной воды в алюмогидратных комплексах происходит задержка образования муллита из – за крис-тализации γ - Аl2 O3 и отделения аморфного SiO2 . Алюмосиликатная шпинель, видимо, не образуется.

В работах отвергают возможность образования γ - Аl2 O3, т.к. кристаллизация γ - Аl2 O3 происходит в значительном интервале температур, и столь большой тепловой эффект не может быть вызван образованием метастабильной фазы при температурах, близких к верхней температуре её устойчивости. Согласно точке зрения, экзотермичность вызывается перестройкой катионов алюминия из четвёртой координации в шестерную и является проявлением избыточной свободной энергии неустойчивой структуры метакаолини-та. Первый экзотермический эффект связывается также с образованием муллита или силлиманита по схемам:

3 Аl2 O3( аморфн.) + 6 SiO2 → 3 Аl2 O3 Аl2 O3 · 2 SiO2 + 4 SiO2 ;

2 Аl2 O3 · 2 SiO2 → Аl2 O3 · SiO2 + SiO2 ;

3 ( Аl2 O3 · 2 SiO2) →3 Аl2 O3 · 2 SiO2 + 4 SiO2 .

Однако образование муллита и силлиманита маловероятно, т.к. длительные диффузионные процессы типа кристаллизации и минералообразования не могут вызывать быстрого тепловыделения. Теплота образования муллита из метакаолинита в 30 раз и более превышает теплоту экзотермического эффекта. Теплота образо-вания силлиманита в 7 раз превышает теплоту этого эффекта. Вслед за первым экзотермическим эффектом на термограмме каолинита наблюдается второй при 1150 - 1300˚С и третий при 1210 - 1320˚С эффекты. Второй экзотермический эффект большинство исследователей связывают с образованием муллита. В каолините, нагретом до 1050˚С, обнаруживается кристобалит. Более чётко он обнаруживается в каолините, обожжённом при 1200 - 1400˚С. Третий экзотермический эффект обусловлен завершением кристаллизации муллита и кристобалита. Высказано предположение о том, что третий экзотермический эффект обусловлен кристаллизацией кристобалита из аморфного кремнезёма – продукта распада каолинита.

Смотрите также

Косметика в химии
...

Моделирование стационарного и нестационарного истечения адиабатно-вскипающей жидкости из коротких каналов
В работе [1] для анализа процесса нестационарного и стационарного истечения вскипающей жидкости в термодинамически неравновесном приближении использован нетрадиционный подход, в основу котор ...

Химия и технология платиновых металлов
Платиновые металлы – это элементы VIII группы Периодической системы Д.И. Менделеева. Их шесть: в пятом большом периоде – так называемые «легкие» платиновые металлы – рутений (Ru), роди ...