Теоретические основы формования ПАН-жгутика
Материалы / Совершенствование технологии получения технического ПАН жгутика / Теоретические основы формования ПАН-жгутика
Страница 1

Технологический процесс получения такой ПАН жгутика включает следующие стадии [4,5]:

- формование нити;

- 2 стадийное пластификационное вытягивание в жидкости;

- промывка нити от роданистого натрия;

- обработка нити разбавленным раствором серной кислоты;

- промывка нити от серной кислоты;

- дополнительное вытягивание в среде пара;

- предварительная сушка нити;

- нанесение отделочной препарации;

- сушка нити и релаксация;

- приемка нити на цилиндрические патроны;

- сортировка, маркировка, упаковка.

Получение ПАН-жгутика осуществляется из того же прядильного раствора, что и при получении волокна, на поточной линии ЛП-24-ПАН, которая по сравнению с технологической схемой получения волокна имеет ряд особенностей [5].

ПАН волокна могут быть получены как формованием из термопластичного состояния полимера, так и из прядильных растворов.

При формовании ПАН волокон из растворов могут быть использованы сухой, сухо-мокрый и мокрый способы получения волокон [6].

В настоящее время наиболее распространен в промышленности мокрый способ формования ПАН волокон. В этом случае возможно применения фильер с большим числом отверстий (более 100 000), что компенсирует низкую скорость формования, и этот способ вполне экономически равноценен высокоскоростному сухому способу формования.

Во время протекания прядильного раствора по капиллярам фильеры происходит значительное изменение структуры растворенного полимера, что отражается в первую очередь на реологических свойствах раствора. Кроме свойств ПАН и растворителя решающую роль в изменении структуры полимера в капилляре играют условия протекания раствора: размеры капилляра, скорость продавливания раствора, продолжительность нахождения раствора в капилляре и, конечно, температурные условия. Кроме того, значительное влияние оказывают также условия на входе и выходе раствора из капилляра. Выявить степень влияния каждого из параметров процесса течения раствора через капилляр не всегда удается, поэтому некоторые из них рассматриваются в совокупности с другими.

Прядильный раствор около отверстия капилляра фильеры имеет изотропную структуру. Попадая в капилляр, раствор испытывает мгновенное воздействие касательных напряжений. Под действием этих напряжений начинает формироваться профиль скоростей потока и одновременно создается поле градиентов скоростей, сначала очень значительное около стенок капилляра, которое постепенно частично выравнивается, приобретая пара­болический профиль. В результате воздействия градиентного поля элементы структуры раствора подвергаются послойной продольной ориентации в наи­большей степени около стенок и в меньшей степени - вдоль оси капилляра. Этот процесс сопровождается, в свою очередь, изменением касательных напряжений, развивающихся в растворе.

Если проследить за изменением напряжения по длине капилляра во время протекания раствора, то оказывается, что сначала оно быстро растет, а затем постепенно падает до определенной, постоянной при данных условиях величины. В момент увеличения напряжения раствор ведет себя как эластичное тело, так как скорость приложения к нему нагрузки на входе в капилляр очень высока. По мере дальнейшего продвижения раствора по капилляру, когда дополнительного нагружения нет, часть напряжений в растворе имеет возможность релаксировать благодаря его пластичности. Релаксация протекает не до конца, а до уровня напряжения, соответствующего вязкостному сопротивлению раствора при установившемся течении.

В момент выхода прядильного раствора из канала капилляра на стенке струйки перестают действовать напряжения. Это состояние передается к центру струйки, и одновременно ориентированная структура раствора стремится вернуться в первоначальное изотропное состояние, т.е. отрелаксировать. Процесс релаксации деформации элементов структуры сопровождается как бы усадкой струйки раствора и соответственно ее расширением.

Страницы: 1 2 3

Смотрите также

Литий (Lithium), Li
Литий (лат. Lithium), Li, химический элемент 1 группы периодической системы Менделеева, атомный номер 3, атомная масса 6,941, относится к щелочным металлам. Природный Л. состоит из двух стабильных изо ...

Кремний (Silicium), Si
Третьим элементом, наиболее распространенным в природе, является кремний. Название этого элемента произошло от латинского "ляпис креманс", что значит - камень, дающий огонь. Так назывался тв ...

Теория образования оксидов азота при горении
Условия образования оксидов при горении до сих пор не разработаны в достаточной мере и требуют глубокой проработки весьма сложной химической кинетики процесса в сочетании с детальным изучен ...