Образование кластеров
Материалы / Изучение кластеров и их свойств в области химии / Образование кластеров
Страница 1

Конкретные процессы, в которых возникают кластеры, столь же многообразны, как и типы кластеров. Однако это многообразие определяется скорее различиями в природе частиц и особенно в способах стабилизации кластеров. Отвлекаясь от таких «частностей», можно усмотреть лишь два общих пути образования кластеров - агрегация в кластер одиночных («мономерных») частиц или кластеров меньшего размера и дезагрегация до кластеров больших коллективов взаимодействующих частиц.

Самый наглядный и в то же время самый важный пример агрегативного пути образования кластеров - зарождение новой фазы. Это частный случай весьма общей категории процессов качественного изменения структуры; для всех таких процессов характерно первоначальное возникновение зародышей новой структуры в недрах старой. Кластерообразование и последующий рост новой фазы - интересное средство «усиления», таковы фотография, декорирование поверхностей, наблюдение элементарных частиц с помощью камер Вильсона и пузырьковых камер.

К явлениям образования кластеров в фазовых переходах близки уже упоминавшиеся предпереходные явления; здесь до возникновения новой фазы дело не доходит, и кластеры остаются как бы несостоявшимися фазами. Они-то и были названы гетерофазными флюктуациями, поскольку они находятся в динамическом равновесии с материнской фазой, т.е. непрерывно возникают и распадаются.

Образование кластеров путем агрегации происходит и во многих иных процессах, не связанных с возникновением новых фаз, например при сольватации ионов в газах и жидкостях. (Так, согласно теории И.П. Стаханова, шаровая молния состоит именно из гидратированных ионов, возникающих в воздухе при «обыкновенной» молнии.) Просто в жидкостях, особенно полярных, молекулы также легко ассоциируются в кластеры. В частности, известны различные кластерные модели строения жидкой воды. Как и в предпереходных состояниях, такие кластеры находятся в динамическом равновесии со средой; разница в том, что они не являются представителями или провозвестниками новой фазы в старой.

Все сказанное относится и к поверхностным кластерам: они могут возникать и при гетерогенном зарождении новой фазы, и просто при адсорбции, образованием новой фазы не сопровождающейся, В качестве примера приведем малоизвестный случай металлических кластеров - продуктов взаимодействия твердых поверхностей с растворами металлов (наиболее известный пример подобных растворов- серебряная вода). В объеме раствора металлические кластеры не обнаруживаются; они возникают и стабилизируются только благодаря адсорбции на поверхности. Весьма интересно, что они способны к обратимой дегидратации (вообще десольватации), что доказано по спектрам поглощения этих систем.

Образование кластеров путем дезагрегации больших коллективов частиц возможно при испарении конденсированных фаз, а также при растворении твердых веществ в жидкостях и плотных газах. Эти процессы также связаны с возникновением новых фаз, но менее плотных, чем исходная. Кластеры и в этом случае могут быть либо промежуточными формами на пути образования новой фазы, либо гетерофазными флюктуациями, характеризующими предпереходное состояние.

Дезагрегация сплошной фазы до кластеров может быть и вовсе не связана с возникновением новых фаз: существует ряд процессов «диспергирования» конденсированных фаз, включая механическое дробление, электроэрозию, ионную бомбардировку, а также воздействие активных сред. Так, окисление сажи озоном сопровождается «откалыванием» от зерен углерода кластеров из нескольких десятков атомов.

Еще один своеобразный случай «химического» диспергирования твердой фазы - образование из нее неравновесных поверхностных кластеров вследствие протекания реакции на поверхности.

Посередине между случаями образования кластеров путем агрегации и путем дезагрегации лежат процессы образования одних кластеров из других без изменения числа частиц в теле кластера. Это главным образом разные реакции стабилизации или дестабилизации кластеров. Важный пример - сольватация электрона, «инжектируемого» в жидкость или возникающего в ней. Кластеры, существующие в ассоциированных жидкостях, таких, как спирты, действуют в качестве ловушек для электрона. Захват электрона и последующая релаксация стабилизированного спиртового кластера протекают за £ 10~12 с.

Страницы: 1 2

Смотрите также

Методы определения концентрации растворённого кислорода в воде
Контроль содержания кислорода – чрезвычайно важная проблема, в решении которой заинтересованы практически все отрасли народного хозяйства, включая чёрную и цветную металлургию, химическую п ...

Методы определения хлорид-ионов
Защите окружающей среды от возрастающей антропогенной нагрузки в настоящее время уделяется все большее внимание во всем мире. Развитие промышленности, в том числе и химической, увеличение до ...

Химики создали молекулу, способную удалять из раствора отрицательно заряженные ионы
Химики создали органическую молекулу, способную связывать отрицательно заряженные ионы растворенных веществ. Это позволяет очищать растворы от ионов, например, хлора и фтора. Агенты (вещества), спос ...