Хитин
Панцирь ракообразных построен из трёх основных элементов – хитина, играющего роль каркаса, минеральной части, придающей панцирю необходимую прочность и белков, делающих его живой тканью. В состав панциря входят также липиды, меланины и другие пигменты. Пигменты панциря ракообразных представлены, в частности, каротиноидами типа астаксантина, астацина и криптоксантина. В кутикуле взрослых насекомых хитин также ковалентно связан с белками типа артраподина и склеротина, а также большим количеством меланиновых соединений, которые могут составлять до 40% массы кутикулы. Кутикула насекомых отличается большой прочностью и в то же время гибкостью благодаря хитину, содержание которого от 30% до 50%. В клеточной стенке некоторых фикомицетов, например в итридиевых, хитин обнаруживается вместе с целлюлозой. Хитин у грибов, как правило, ассоциируется с другими полисахаридами, например b-1-3-глюканом, у членистоногих он связан с белками типа склеротина и меланинами.
Структурный компонент хитина N-ацетил-D-глюкозамин у бактерий, наряду с N-ацетилмурамовой кислотой, является компонентом клеточной стенки. В животном мире N-ацетилглюкозамин входит в состав мукополисахаридов (гликозаминогликаны) соединительной ткани (гиалуроновой кислоты, хондроитинсульфатов, гепарина), групповых веществ крови и других гликопротеинов. Остаток N-ацетил-D-глюкозамина обычно находится на восстановленном конце углеводных цепей животных гликопротеинов, образуя связь углевод – белок. Этим объясняется совместимость хитина и хитозана с живыми тканями. Наиболее распространённым типом связи в животных гликопротеинах является N-гликозидная связь, образуемая остатком N-ацетилглюкозамина и b-амидной группой аспаргина.[1,2]
Хитозан является b-(1-4)-2-амино-2дезокси-D-гликополисахаридом, т.е. аминополисахаридом, полученным при удалении ацетильной группы из положения С2 в хитине в результате обработки его в жестких условиях раствором щелочи, что позволяет заместить ацетильные группы хитина аминогруппами:
В зависимости от источника сырья и метода получения молекулярная масса хитозана колеблется в пределах 3·105-6·105.
Как и хитин, хитозан представляет собой аморфно-кристаллический полимер, для которого также характерно явление полиморфизма, причем количество структурных модификаций при переходе от хитина к хитозану увеличивается до 6. Сохранение при этом размеров элементарной ячейки кристаллита вдоль оси макромолекулы на уровне соответствующей характеристики для хитина (103 нм) свидетельствует о том, что конформация макромолекул при переходе от хитина к хитозану существенно не изменяется. В то же время в процессе деацетилирования хитина заметно уменьшается общая упорядоченность структуры (степень кристалличности снижается до 40-50%). Снижение степени кристалличности может быть обусловлено как аморфизацией структуры вследствие внутрикристаллитного набухания при деацетилировании, так и нарушением регулярности строения полимерной цепи в случае неполного отщепления N-ацетильных групп.
В отличие от хитина, получаемый при его деацетилировании хитозан растворяется даже в разбавленных органических кислотах, например в водном растворе уксусной кислоты. При этом для растворов хитозана, как и других полимеров, характерна существенная зависимость вязкости от концентрации (при увеличении концентрации раствора хитозана в 1-2%-ном растворе уксусной кислоты с 2 до 4 % вязкость раствора увеличивается примерно в 30 раз). Появление в каждом элементарном звене макромолекулы свободной аминогруппы придает хитозану свойства полиэлектролита, одним из которых является характерный для растворов полиэлектролитов эффект полиэлектролитного набухания - аномального повышения вязкости разбавленных растворов (с концентрацией ниже 1 г/л) при уменьшении концентрации полимера. Этот эффект является следствием увеличения эффективного объема и асимметрии макромолекул в растворе в результате отталкивания одноименных зарядов, возникающих при протонировании аминогрупп [2,3].
Хитозан является биополимером относительно слабой основности (рКа~ 6,5). Он не растворяется в щелочных средах, однако его катионная полиэлектролитная природа в кислой среде обеспечивает взаимодействие с отрицательно заряженными синтетическими или природными полимерами. Этот катионный полиамин имеет высокий молекулярный вес линейного полиэлектролита, а также обладает вязкостью от высокой до низкой. Проявляет хелатные свойства, связывает переходные металлы, обладает высокой способностью к химической модификации благодаря наличию реактивных амино- и гидроксильных групп. Кроме того, хитозан является природным биополимером, который биологически совместим с тканями организма, биодеградирует до обычных компонентов организма (глюкозамин, N-ацетилглюкозамин), нетоксичен, в медицине проявляет себя как гемостатик, бактериостатик, фунгистатик, иммуномодулятор, оказывает антиопухолевый эффект и снижает уровень холестерина [4].
Смотрите также
Прогнозирование критических свойств веществ и критериев подобия
...
Физии обнаружили два ранее неизвестных свойства золота
Физики из Института технологий американского штата Джорджия сообщили об обнаружении двух ранее неизвестных свойств золота, которые драгоценный металл проявляет на микроскопическом уровне. В масштабе & ...