Способы увеличения скорости процессаСтатьи / Теоретические основы химической технологии / Способы увеличения скорости процессаСтраница 1
Одной из основных задач технологии является использование всех путей для увеличения скорости технологического процесса и соответствующего повышения производительности аппаратуры. Анализ направлений интенсификации химико-технологических процессов производится при помощи основных формул скорости процесса, согласно которым для повышения скорости процесса следует найти способы увеличения определяющих величин Ac, k и F(v). Увеличение движущей силы процесса Дс может быть достигнуто: а) возрастанием концентраций взаимодействующих компонентов в исходных материалах (сырье); б) повышением давления; в) регулированием температуры процесса; г) отводом продуктов реакции из реакционного объема с целью сдвига равновесия в сторону продукта. Движущая сила химических реакций, процессов абсорбции, адсорбции и конденсации выражается через разности действительных с и равновесных с* концентраций реагирующих веществ (с—с*). Поэтому увеличение движущей силы процесса может осуществляться или увеличением с, или уменьшением с*, или одновременным соответствующим изменением обеих величин.
1. Увеличение концентрации взаимодействующих компонентов в исходном сырье повышает с и пропорционально увеличивает скорость процесса. Способ увеличения концентрации взаимодействующих компонентов в исходном сырье зависит от агрегатного состояния материала. Увеличение содержания полезного составляющего в твердом сырье называется обогащением, а в жидком и газообразном — концентрированием. Увеличение концентрации взаимодействующих веществ — это один из самых распространенных приемов для интенсификации процессов.
Повышение давления влияет на скорость процесса (скорость достижения равновесного состояния обратимых процессов) и состояние равновесия. Давление сильно влияет на скорость процессов, идущих в газовой фазе или же при взаимодействии газов с жидкостями и твердыми телами. В гомогенных процессах, протекающих в газовой фазе или в гетерогенных с участием газообразных компонентов, повышение давления уменьшает объем газовой фазы и соответственно увеличивает концентрации взаимодействующих веществ. Таким образом, повышение давления равносильно росту концентрации реагентов. Влияние давления определяется кинетическими уравнениями.
Таким образом, скорость реакции взаимодействия газовых компонентов пропорциональна давлению в степени, равной порядку реакции. Давление наиболее сильно интенсифицирует реакции высокого порядка. Однако рост давления может привести к изменению порядка реакции и уменьшению константы скорости процесса k.
В промышленности широко применяют повышенное давление для ускорения абсорбции. Для процессов десорбции газов и испарения жидкостей ускорение процесса и повышение выхода достигается снижением давления, т. е. применением вакуума.
Значения равновесных парциальных давлений (концентраций) компонентов рА* и рв* рассчитываются для заданного состава газовой смеси по известным константам равновесия.
Для обратимых газовых реакций, протекающих с уменьшением объема, скорость реакции и выход, продукта будут возрастать с повышением давления за счет увеличения действительных концентраций (парциальных давлений) компонентов р\ и рв и понижения равновесных парциальных давлений /?л* и рв*, т.е. сдвига равновесия в сторону продукта. Выход продукта по такой реакции непрерывно увеличивается при повышении давления. Однако градиент увеличения выхода с повышением давления непрерывно снижается, поэтому, слишком высокие давления применять невыгодно, особенно в тех случаях, когда газовая смесь содержит значительные количества инертных примесей.
Рациональное давление колеблется для различных процессов от одной десятой до нескольких десятков мегапаскалей (от одной до нескольких сотен атмосфер). Многие важные производственные процессы, такие, как синтез аммиака, метанола, производство бензина гидрированием тяжелого топлива и ряд других реакций газовых компонентов, которые проходят с уменьшением объема, осуществлены в промышленности только благодаря приме-Пению высоких давлений (свыше 10 МПа).
Смотрите также
Контрольный синтез Mg(NO3)2 – MgO – MgCl2
Цель
работы: Изучить цепочку синтеза Mg(NO3)2 - MgO - MgCl2,
и осуществить ее на практике. Рассмотреть физико-химические характеристики
веществ, участвующих в химических реакциях при син ...
Углерод и его основные неорганические соединения
Углерод (лат. Carboneum) С – химический элемент IV группы периодической системы
Менделеева: атомный номер 6, атомная масса 12,011(1). Рассмотрим строение атома
углерода. На наружном энергети ...