Стеклянные электроды и их приминение
Статьи / Стеклянные электроды и их приминение
Страница 5

E = a ± b/2 lgab

Влияние однозарядного иона второго сорта (“мешающего”) на потенциал ионообменного электрода выражается общей формулой:

E = a + blg(ab + Kспb-aa a)

Константа специфичности функции Kспb-a – коэффициент, содержащий в себе константу ионообменного равновесия ионов А и В в ионите:

Kспb-a = Ua/Ub Kспb-a

Вообще теория механизма диффузии ионов в твердом теле достаточно хорошо разработана лишь для простых ионных кристаллов строго регулярной структуры, типа каменной соли, галогенидов серебра и т.п. В них можно выделить 3 главных механизма диффузии.

1. Диффузия по вакантным узлам решетки. Ион перескакивает из одной группы к другому аналогичному узлу, где место противоиона было не занято (т.е. была вакансия, “дырка”). Этот процесс, повторяясь, приводит к перемещению ионов в одном направлении, а вакансий – в другом, противоположном. Такой механизм диффузии называют “вакансионным”, или “дырочным”.

2. Ион может заранее отдиссоциировать от узла и занимать положение, не связанное с его пребыванием возле какого-либо определенного узла, находиться между узлами – в междоузлиях. Выход из этого положения и миграция в другое, аналогичное также связаны с некоторыми энергетическими затратами, но они меньше, чем в предыдущем случае. Такой механизм миграции называют “межузельным”.

3. Третий механизм объединяет черты двух предыдущих. Ион из междоузлия попадает в занятый другим ионом узел и выбивает другой из лунки или как бегун передает эстафетную палочку, оставаясь сам на месте. Этот механизм так и называется – “крокетный”, или “эстафетный”.

Иониты, за исключением, может быть, цеолитов, не принадлежат к числу твердых тел регулярной структуры. Хотя в последнее время синтезируется кристаллические неорганические иониты, в большинстве своем иониты – аморфные вещества, гелеобразный характер которых усугубляется их склонностью к набуханию в воде и других растворителях. Поэтому закономерности, установленные для регулярных кристаллических тел, нельзя прямо переносить на тела нерегулярной аморфной структуры. Однако некоторое их подобие можно допустить хотя бы потому, что в любом аморфном теле сохраняются элементы кристаллической структуры – “ближний порядок”. Кристаллические тела с твердыми аморфными ионитами сближает также некоторое сохранение жесткости и компактности структуры последних, вызывающие, как и в кристаллах, пространственные затруднения для движения ионов. Кроме того, возможно, что гетерогенная мембрана имеет более жесткую структуру, чем ионит, из которого она сделана. Во всяком случае энергетические различия между состоянием иона в ионогенной группе, вблизи узла квазирешетки – “как будто бы – решетки” ионита, и состоянием отдиссоциированного иона в междоузлии могут быть достаточно велики.

Из рассмотренных механизмов для мембран из наиболее набухших гелеобразных ионитов наиболее вероятен межузельный механизм; можно предположить, что чем регулярнее и жестче структура ионита (а стекло – один из наиболее компактных и “жестких” ионитов), тем больше вероятность включения и других механизмов. Это зависит также от концентрации фиксированных ионов, природы противоионов и других факторов.

Только по отношению к некоторым ионам удалось создать высокоспецифичные электроды из твердых ионитов. Это, например, стеклянные электроды, специфичные к ионам Н+ и Ag+-ионам, резко отличающийся по своей природе от других однозарядных ионов. Для этих ионов можно предположить и механизм переноса, отличающийся от межузельного.

С другой стороны, по отношению к иону, совершенно неподвижному в фазе ионита и на границе мембрана – раствор иона, ионит не может обладать устойчивой электродной функцией. Доля участия ионов в переносе заряда зависит от соотношения их концентраций (энергетический фактор).

Ионный обмен определяет, до какого соотношения активностей ионов А и В в растворе можно “не обращать внимания” на присутствие “постороннего” иона. Только в переходной области от функции иона В к функции иона А на потенциал электрода оказывает соизмеримое влияние оба иона.

Страницы: 1 2 3 4 5 6 7 8 9

Смотрите также

Физии обнаружили два ранее неизвестных свойства золота
Физики из Института технологий американского штата Джорджия сообщили об обнаружении двух ранее неизвестных свойств золота, которые драгоценный металл проявляет на микроскопическом уровне. В масштабе & ...

Степень превращения
Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству. Для простейшей реакции   ,[1] где  - концентрация на входе в реактор или в начале ...

Курс лекций по Коллоидной химии (Часть 2)
...