Реакции модификации производных изоксазола
Статьи / Производные изоксанолы: получение, свойства и применение / Реакции модификации производных изоксазола
Страница 1

Изоксазольный цикл устойчив к действию многих обычно используемых в синтезе реагентов — сильных кислот, мягких восстановителей, сильных окислителей. Положительный аспект латентной функциональности изоксазольного ядра состоит в том, что в различные положения молекулы можно ввести функциональные группировки или модифицировать уже имеющиеся, не затрагивая сам гетероцикл. При этом малый геометрический размер и компактность гетероцикла не создают препятствий для проведения реакций.

Основной путь модификаций 2-изоксазолинов базируется на их способности вступать в реакции замещения. При действии сильных оснований происходит отрыв либо одного из аллильных протонов при атоме С(4) цикла (4-эндо-депротонирование), либо в заместителе при С(3) цикла (3-экзодепротонирование) с образованием стабильного при -60—80°С аниона, который может взаимодействовать с различными электрофилами. Так, 3,5-дифенилизоксазолин XX при действии диизопропиламида лития (LDA) в ТГФ при - 78 °С образует 4-экзо-анион (С), алкилирование которого происходит транс-стереоселективно по отношению к заместителю при С(5). Этот метод позволяет получать 4-транс-R-изоксазолины XXI, которые не всегда доступны реакцией нитрилоксидного присоединения к транс-алкенам из-за ее низкой селективности. Потенциальные предшественники аминосахаров — 4-гидроксиизоксазолины XXII — недоступны нитрилоксидным синтезом, поскольку в циклоприсоединении заместитель OR алкена занимает положение 5 гетероцикла, но их также можно получить методом транс-селективного 4-эндо-гидроксилирования.

Атом водорода при третичном атоме С(4) в 4-метилизоксазолине XXI (Е=Ме) может снова отщепляться, благодаря чему возможно получение 4-гем-диметилизоксазолина. Для 3-алкилзамещенных изоксазолинов было установлено, что алкилирование заместителя при С(3) идет после алкилирования цикла, т. е. 4-эндопротон имеет более высокую кинетическую кислотность и депротонируется первым. Для 3,4,5-тризамещенных изоксазолинов, в частности для 3-алкил-4,5-цикло-пентаноизоксазолинов, предпочтительное 3-экзо-алкилирование объясняется меньшей кинетической кислотностью эндометинового водорода по сравнению с экзометильным водородом. Региоселективность депротонирования зависит, однако, от используемого растворителя: в неполярных растворителях наблюдается региоспецифическое 3-экзо-депротонирование. Значительное увеличение региоселективности достигается при использовании более объемного литийамидного основания.

Факторы стереоселективности эндоалкилирования гетероцикла были изучены на примере изоксазолинов XXIII и установлено, что кислородсодержащий заместитель при атоме С(5) направляет алкильный заместитель преимущественно в транс-положение. Предполагается, что в реакции образуется переходный комплекс (D), в котором кислород заместителя OR при С(5) хелатируется с катионом лития, координированным с 4-эндоанионом, тем самым син-сторона этого комплекса закрывается для атаки электрофильной частицей. Таким образом обеспечивается предпочтительность введения новой алкильной группы напротив OR, даже в случае 4-метил-5-алкоксиизоксазолина.

Основным фактором стереоконтроля 3-экзо-алкилирования являете; заместитель при атоме С(4) изоксазолина, по отношению к которому замещение идет преимущественно транс-стереоселективно.

Депротонирование 3,5-диметилизоксазолов происходит региоизбирательно сначала по метальной группе при атоме С(5), а затем по метилу при С(3), так что при последовательном замещении можно получит! различные 3,5-дизамещенные изоксазолы.

Подвижность аллильных протонов в положениях 3 и 5 изоксазол; и положениях 4 и 5 изоксазолина может быть использована для введения различных функциональных групп. Например, 3,5-диметил-4-нитроизоксазол использован в синтезе кумариновой кислоты i качестве СН-кислотного компонента реакции Перкина. При синтезе ланкацидйна разработан метод одностадийного последовательной ацилирования и алкилирования изоксазолинового цикла по атому С(4).

Страницы: 1 2

Смотрите также

Кинетика химических реакций
Кинетика химических реакций, учение о химических процессах — о законах их протекания во времени, скоростях и механизмах. При исследовании химических реакций, в частности, используемых в хим ...

Производство серной кислоты
...

Производство бутадиена-1,3
Какое количество бутана необходимо для получения 2т бутадиена-1,3, если известно, что бутан содержит 15% примесей, а степень превращения составляет 80%? ...