Принцип второй .
Статьи / Принципы динамической организации / Принцип второй .

Система сохраняет состояние неизменным, пока её обмен движущейся материи (внутренний и внешний) тождествен.

С точки зрения законов сохранения материи и движения этот принцип совершенно очевиден: система, осуществляющая тождественный обмен, абсолютно “прозрачна” для потока падающей на неё материи, вследствие чего проходящая через систему материя не оставляет в ней (системе) никакой следовой реакции.

Иллюстрируем правомерность этого принцип в примерами из различных отраслей природы.

В механике. Реальное инерциальное движение в той мере, в какой оно вообще имеет место (падение, например, шарика в вязкой жидкости под действием постоянной силы тяжести) , обязано не отсутствию сил, а их равновесию, то есть выступает как результат тождественности некоего специфического обмена. В этом обмене шарик получает движущуюся материю у ускоряющего поля и отдаёт её окружающей вещественной среде (вязкой жидкости) .

В термодинамике. Термодинамическая система, уравновешенная в изотермических условиях (газ в цилиндре под поршнем, например, или чёрное излучение в закрытой полости) , сохраняет (если пренебречь исчезающими малыми флюктуациями) равновесное состояние не в силу отсутствия взаимодействия, а в результате тождественного обмена частицами, излучением и пр.

В микромире. Микрочастицы (молекулы, атомы, ядра и элементарные частицы) сохраняют основное стационарное состояние неизменным, если отсутствует возмущающее воздействие извне в виде фотонов и других частиц. Это состояние сохраняется также в результате (в конечном итоге) акта присоединения - отчуждения фотона, например, ибо этот акт является тождественным обменом в его среднем значении в системе центра масс (фотон присоединяется, фотон отчуждается - атом возвращается в исходное основное состояние) . Хотя в процессе обмена состояние атома изменялось, но в конце этих событий, когда обмен за счёт обратимости микропроцессов оказался сбалансированным в тождественный, атом вновь оказался в том же исходном основном состоянии.

Рассмотрим предельный частный случай тождественного внешнего обмена, когда все его компоненты равны нулю (полный реальный обмен в нуль не обращается из-за того, что всякая материальная система обладает внутренним движением, то есть внутренним обменом, не обращающимся в нуль) .

В этом случае меняется формулировка второго принципа динамической организации: замкнутая система, осуществляющая тождественный внутренний обмен, сохраняет состояние неизменным (замкнутость системы означает отсутствие внешнего обмена) .

В механике материальной точки, не имеющей внутреннего состояния (можно сказать, обладающей тождественно нулевым внутренним обменом - идеализация) , последняя формулировка по содержанию совпадает с законом инерции: отсутствие сил - отсутствие обмена - отсутствие изменения состояния.

В термодинамике этот случай характеризуется равновесием замкнутой системы, а формулировка второго принципа динамической организации воспроизводит постулат о сохранении равновесия.

По отношению к микросистемам эта формулировка совпадает с известным в квантовой механике положением об устойчивости основного квантового состояния.

Таким образом второй принцип является обобщением трёх положений из различных областей (или сторон) природы: закона инерции - из механики ; постулата о сохранении равновесия замкнутой макросистемы - из термодинамики ; постулата об устойчивости стационарности основного состояния микросистем - из квантовой механики. Поэтому второй принцип динамической организации может быть назван обобщённым законом инерции.

Смотрите также

Использование отходов сельскохозяйственного производства
Наличие большого количества отходов химической промышленности, сельскохозяйственного производства, различных видов бытовых отходов может быть неплохой альтернативой традиционным наполнителя ...

Приложение 8
Тему “Углерод, подгруппа углерода.” можно завершить зачетным уроком по составлению обобщающей схемы, которая пригодится для сдачи экзамена по химии и приведет в систему знания учащихся, дополняя в ...

Кобальт (Cobaltum), Со
Кобальт - Со, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе э ...