Постулат 5. Средние значения динамических переменных
Статьи / Постулаты квантовой механики / Постулат 5. Средние значения динамических переменных

2.5.1. Среднее значение динамической переменной , получаемое из множества измерений, равно математическому ожиданию этой величины:

(2.30)

Если волновая функция нормирована, то знаменатель единичен, и получаем более простое выражение;

(2.31)

2.5.2. Покажем, что у чистых состояний квантово-механической системы средние значения наблюдаемых переменных совпадают с собственными значениями соответствующих эрмитовых операторов. В этом случае формулы (2.30) и (2.31) непосредственно следуют из фундаментального операторного уравнения (1.1).

Чтобы показать это, запишем уравнение (1.1) с помощью символики Дирака, далее слева скалярно домножим каждую его часть на бра-вектор | и выделим в правой части равенства собственное число . В итоге приходим к формулам (2.30) и (2.31). Цепочка простейших преобразований имеет вид:

Для общего случая смешанных состояний подобного обоснования нет, и формулы (2.30) и (2.31) постулируются. Этот постулат приобретает уже универсальное содержание. С его помощью можно рассчитывать средние значения даже тех динамических переменных, операторы которых не обладают дискретными спектрами волновых функций и собственных значений, например, координаты и потенциальной энергии.

Смотрите также

Менделеев Дмитрий Ивановы и химия
Менделеев Дмитрий Ивановы-великий русский химик, открыватель периодического закона химических элементов. Родился 27 января 1834. в Сибири, в Тобольске. Отец Менделеева был директором гимназии, но, ...

Гафний (Hafnium), Hf
Гафний - химический элемент IV группы периодической системы Менделеева; порядковый номер 72, атомная масса 178, 49; серебристо-белый металл. В состав природного Г. входят 6 стабильных изотопов с массо ...

Степень превращения
Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству. Для простейшей реакции   ,[1] где  - концентрация на входе в реактор или в начале ...