Энергетические уровни жесткого ротатора и его спектр
Статьи / Полярные диаграммы и энергетические уровни волновых функций жесткого ротатора / Энергетические уровни жесткого ротатора и его спектр

Поскольку квадрат момента импульса в жестком ротато­ре однозначно связан с энергией (4.47), формула (4.101) позволяет легко рассчитать его уровни и спектральные термы (Т

), т.е. уровни, вы­раженные в единицах измерения волнового числа (см–1 ) , являющегося характеристикой излучения

(4.105)

. (4.105)

(4.107)

Величина В, определяемая (4.107), называется вращательной постоянной ротатора.

4.3.7.2. Обозначим величину и составим таблицу 4.5 воз­можных значений энергии жесткого ротатора, а на рис. 4.5. предста­вим его энергетическую диаграмму.

4.3.7.3. Подобно плоскому ротатору, энергетическая диаграмма жесткого ротатора демонстрирует расходящуюся систему уровней, одна­ко значительно возрастает кратность вырождения. Расстояния между соседними уровнями увеличиваются с ростом квантового числа l, причем они линейно связаны с квантовым числом нижнего уровня l:

. (4.108)

Таблица 4.5.

Уровни жесткого ротатора

l

Символ уровня

Энергия

Е,

Вырождение

g=2l+1

0

S

0

1

1

P

2

3

2

D

6

5

3

F

12

7

4

G

20

9

Рис. 4.5. Энергетическая диаграмма жесткого ротатора.

Для жесткого ротатора, например, двухатомной молекулы, разрешены спектральные переходы между соседними уровнями . Поэтому, согласно уравнению 4.108, ее спектр пред­ставляет собой набор линий, отстоящих друг от друга на примерно одинаковую величину, равную в энергетической шкале, или 2В в шкале волновых чисел .

Поскольку вращательная постоянная связана с моментом инерции, изучение вращательных спектров молекул даёт возможность эксперимен­тального определения момента инерции молекул и, следовательно, меж­атомных расстояний.

Смотрите также

Влияние адсорбционного взаимодействия на молекулярную подвижность полимерных цепей в граничных слоях
Адсорбционное взаимодействие полимерных молекул с поверхностью, которое имеет место в наполненных системах, можно рассматривать как процесс, приводящий к перераспределению межмолекулярных связей в с ...

Технеций (Technetium), Те
Технеций был предсказан как эка-марганец Менделеевым на основе его Периодического закона. Несколько раз он был ошибочно открыт (как люций, ниппоний и мазурий), настоящий технеций был открыт в 1937 год ...

Медь (Cuprum), Cu
Медь- химический элемент I группы периодической системы Менделеева; атомный номер 29, атомная масса 63,546; мягкий, ковкий металл красного цвета. Природная М. состоит из смеси двух стабильных изотопов ...