Каталитические системы на основе алюмофосфатов цеолитного
типаСтатьи / Получение диметилового эфира дегидратацией метанола на АlPO4 +SiO2 катализаторах / Каталитические системы на основе алюмофосфатов цеолитного
типаСтраница 1
Важным направлением работ в области синтеза новых адсорбентов и катализаторов является получение цеолитных структур на основе неорганических фосфатов. В последние годы пристальное внимание исследователей привлекли фосфорсодержащие цеолиты. Однако получить алюмофосфатные молекулярные сита, свободные от кремний-кислородных тетраэдров, не удавалось, поскольку синтез проводили в присутствии алюмосиликатного геля. В 1982 г., проведя гидротермальный синтез с использованием структурообразующих реагентов, получили новый класс алюмофосфатных молекулярных сит, в которых кремний-кислородные тетраэдры полностью изоморфно замещены на фосфор-кислородные. Разнообразие размеров пор и структуры в сочетании с высокой термической устойчивостью делают каталитические и адсорбционные свойства алюмофосфатных молекулярных сит уникальными.
По данным работы [29] фосфорсодержащие цеолиты обладают мягкими кислотными свойствами, а в [30, 31] указывается, что при каталитическом разложении метанола на алюмофосфатах в атмосфере азота единственным продуктом конверсии метанола при Т до 400°С был диметиловый эфир, но при дальнейшим увеличении температуры наблюдается образование формальдегида и закоксовывание катализатора. Алюмофосфаты обладают высокой удельной поверхностью, которая достигает 440 м2 /г, что является очень важным, так как их активность значительно возрастает с увеличением их удельной поверхности [32].
В литературе [31-33] представлены способы получения алюмофосфатов путем гидротермальной обработки реакционных гелей, полученных взаимодействием активного золя гидроксида алюминия с концентрированной фосфорной кислотой. Кристаллизацию гидрогеля проводят при температуре Т = 303-523 К в присутствии органических оснований или мочевины, выполняющих структурно-направляющую роль в процессе синтеза. Органические основания и мочевина, применяемые в процессе синтеза, определяют направление кристаллизации алюмофосфатного геля [33], что приводит к воспроизводимому формированию различных кристаллических структур с развитой системой микропор. Тип структуры алюмофосфатов обусловлен главным образом природой и свойствами структурообразующих реагентов. В ряде случаев алюмофосфаты цеолитного типа как по структуре, так и по способности к поглощению газов и паров подтверждают свою близость к эталонным образцам известных алюмосиликатных сит [31]. Поскольку формирование структуры алюмофосфатов происходит с заполнением микропор органическими соединениями, которые удаляются при нагревании, по завершении приготовления таких катализаторов необходимо их прокаливание с целью удаления органических составляющих, а также остатков влаги.
В [32, 34] представлен способ получения аморфных фосфатов алюминия осажденем из растворов азотнокислого алюминия и фосфорной кислоты аммиаком. Кроме того в [32] предложен способ получения гелеобразных фосфатов путем осаждения из раствора нитрата алюминия и фосфорной кислоты аммиаком с добавлением мочевины в качестве структурообразующего компонента.
Несомненным плюсом алюмофосфатов является их высокая термическая стабильность. По сравнению с алюмосиликатными молекулярными ситами, имеющими сравнительно низкий температурный предел устойчивости, в большинстве случаев 400-600°С [31], алюмофосфаты характеризуются высокой термической устойчивостью, и появление экзоэффектов, соответствующих перестройке их кристаллических структур наблюдается в области температур 900-980°С [30- 33].
Смотрите также
Иридий (Iridium), Ir
Иридий почти такой же тяжеловес, как и осмий. Плотность иридия - 22,5, а температура плавления - 2450°С. Ряд химических свойств сближает иридий с рутением, палладием, осмием и особенно родием. Ест ...
Фосфор (Phosphorus), Р
В темной комнате или ночью на улице попробуйте сделать такой простой опыт. Не очень сильно, так, чтобы не загорелась спичка, чиркните ею по спичечной коробке. Вы заметите, что некоторое время на терке ...
Кобальт (Cobaltum), Со
Кобальт - Со, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе э ...
