Математическое моделирование химических процессовПериодическая система / Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов / Математическое моделирование химических процессовСтраница 1
В прошедшее десятилетие было предпринято очень много попыток описать математически процессы, протекающие при восстановлении оксида азота. В частности, при помощи математических моделей изучались эффекты массопереноса на блочном катализаторе. Была разработана двухмерная математическую модель для движения газового потока в слое катализатора, в которой особое внимание уделялось таким параметрам, как скорость движения потока, а, следовательно, и режим течения газового потока, диаметр монолитного канала, коэффициент диффузии и скорость химической реакции. Адекватность предложенной модели была проверена путем сравнения расчетных данных с экспериментальными. Сравнение показало, что и внутре-, и внешнедиффузионные ограничения должны приниматься во внимание, особенно при высоких температурах.
Работы этих ученых показали, что математическое моделирование процессов является очень перспективным и достаточно точным методом изучения химических процессов вообще и процессов восстановления оксидов азота в частности.
Математическая модель определяется лимитирующей стадией процесса. В случае, когда лимитирующей стадией является химическая реакция, математическая модель будет включать в себя дифференциальные уравнения первого порядка, описывающие изменение концентрации каждого вещества во времени:
где [x] – концентрация интересующего нас вещества,
t – время,
rx – скорость изменения концентрации данного вещества во времени, имеющая, следующий вид:
, где
- предэкспоненциальный множитель,
энергия активации процесса,
R – универсальная газовая постоянная,
С – концентрации реагентов
m, n – порядок реакции по веществам a и b соответственно. В данной работе все порядки приняты равными единице.
Если же лимитирующей стадией процесса является внутренняя или внешняя диффузия, математическая модель будет состоять из дифференциальных уравнений второго порядка. В эти уравнения входят также такие параметры, как скорость движения потока, размер пор катализатора, коэффициент диффузии. Такие зависимости позволяют определить концентрацию вещества в зависимости от длины реактора и расстояния от его оси. Вид этих уравнений представлен ниже.
Для нахождения концентрации вещества в потоке:
Для нахождения концентрации вещества на поверхности и внутри катализатора:
Скорость реакции разложения оксида азота описывается при помощи кинетической модели по механизму Лэнгмюра-Хиншельвуда:
Перечень символов:
- концентрация в потоке;
- концентрация в твердой фазе (на поверхности катализатора и внутри его пор;
- коэффициент эффективной диффузии;
r – радиальная координата;
- коэффициент молекулярной диффузии;
Смотрите также
Исследование диэлектрической релаксации в полимерных полувзаимопроникающих сетках
Поиск полимерных материалов с
модифицированным комплексом физических свойств ведет к использованию различного
рода композиционных систем, в которых важным фактором регулирования свойств
явл ...
Гелий (Helium), Не
18 августа 1868 г. ожидалось полное солнечное затмение. Астрономы всего мира деятельно готовились к этому дню. Они надеялись разрешить тайну протуберанцев - светящихся выступов, видимых в момент полно ...
Нобелий (Nobelium), No
Советские исследователи предложили назвать новый элемент Jl (жолиотий), в честь Фредерика Жолио-Кюри, американцы — Нобелий (No), в честь Альфреда Нобеля. Символы Jl, No можно было видеть в табли ...