Математическое моделирование химических процессов
Периодическая система / Моделирование газофазных процессов, протекающих при гетерогенно-каталитическом восстановлении оксидов / Математическое моделирование химических процессов
Страница 1

В прошедшее десятилетие было предпринято очень много попыток описать математически процессы, протекающие при восстановлении оксида азота. В частности, при помощи математических моделей изучались эффекты массопереноса на блочном катализаторе. Была разработана двухмерная математическую модель для движения газового потока в слое катализатора, в которой особое внимание уделялось таким параметрам, как скорость движения потока, а, следовательно, и режим течения газового потока, диаметр монолитного канала, коэффициент диффузии и скорость химической реакции. Адекватность предложенной модели была проверена путем сравнения расчетных данных с экспериментальными. Сравнение показало, что и внутре-, и внешнедиффузионные ограничения должны приниматься во внимание, особенно при высоких температурах.

Работы этих ученых показали, что математическое моделирование процессов является очень перспективным и достаточно точным методом изучения химических процессов вообще и процессов восстановления оксидов азота в частности.

Математическая модель определяется лимитирующей стадией процесса. В случае, когда лимитирующей стадией является химическая реакция, математическая модель будет включать в себя дифференциальные уравнения первого порядка, описывающие изменение концентрации каждого вещества во времени:

где [x] – концентрация интересующего нас вещества,

t – время,

rx – скорость изменения концентрации данного вещества во времени, имеющая, следующий вид:

, где

- предэкспоненциальный множитель,

энергия активации процесса,

R – универсальная газовая постоянная,

С – концентрации реагентов

m, n – порядок реакции по веществам a и b соответственно. В данной работе все порядки приняты равными единице.

Если же лимитирующей стадией процесса является внутренняя или внешняя диффузия, математическая модель будет состоять из дифференциальных уравнений второго порядка. В эти уравнения входят также такие параметры, как скорость движения потока, размер пор катализатора, коэффициент диффузии. Такие зависимости позволяют определить концентрацию вещества в зависимости от длины реактора и расстояния от его оси. Вид этих уравнений представлен ниже.

Для нахождения концентрации вещества в потоке:

Для нахождения концентрации вещества на поверхности и внутри катализатора:

Скорость реакции разложения оксида азота описывается при помощи кинетической модели по механизму Лэнгмюра-Хиншельвуда:

Перечень символов:

- концентрация в потоке;

- концентрация в твердой фазе (на поверхности катализатора и внутри его пор;

- коэффициент эффективной диффузии;

r – радиальная координата;

- коэффициент молекулярной диффузии;

Страницы: 1 2

Смотрите также

Введение
Это была настоящая тайна. Я оказался не в состоянии противиться такому соблазну. С одной стороны, алхимия — поиск легендарного Философского камня, таинственной субстанции, позволяющей осуществить ...

Химические способы нанесения металлических покрытий
Металлические слои можно получать на очень большом числе самых разнообразных материалов, таких, как стекло, кварц, фарфор, слюда, целлулоид, а также текстиль. Насколько многочисленны примен ...

Применение радиоактивных изотопов в технике
...