Биогенная классификация химических элементов
Периодическая система / Минеральный состав организма / Биогенная классификация химических элементов
Страница 3

Действительно, из первых четырех элементов можно построить целый ряд органических молекул, таких как простые углеводороды, альдегиды, спирты, и некоторые аминокислоты. Академик А.И. Опарин показал это в модельных экспериментах, воспроизводящих природные условия, предположительно существовавшие около 3 млрд. лет назад. Эти же элементы являются каркасом любой органической молекулы.

Причина того, что эти четыре элемента так идеально подходят к выполнению биологических функций, заключается в том, что все они легко образуют ковалентные связи посредством спаривания электронов. Для того чтобы полностью укомплектовать свои внешние электронные оболочки и образовать таким образом стабильные ковалентные связи, водороду требуется один электрон, кислороду - два, азоту - три, и углероду - четыре электрона. Эти четыре элемента могут легко реагировать друг с другом, заполняя свои внешние электронные оболочки. Помимо этого, три из них - углерод, азот и кислород - образуют и одинарные и двойные связи, благодаря чему могут образовывать самые разнообразные химические соединения. Наконец, среди элементов, способных образовывать ковалентные связи, они самые легкие, и, так как прочность ковалентной связи обратно пропорциональна атомным весам связанных с ее помощью атомов, возможно, что живые организмы "выбрали" именно эти элементы из-за их способности формировать прочные ковалентные связи.

Очень важна способность атомов углерода взаимодействовать друг с другом, образуя стабильные углерод-углеродные связи, что и обеспечивает углеводородные каркасы разнообразных молекул. Соединениям углерода свойственна еще одна отличительная особенность, которая состоит в способности спаренных электронов образовывать вокруг каждого атома углерода тетраэдрическую конфигурацию, благодаря чему различные типы органических молекул обладают различной трехмерной структурой. Никакой другой химический элемент, кроме углерода, не может создавать стабильные молекулы со столь разнообразными конфигурациями и размерами и с таким многообразием функциональных групп.

Следует обратить внимание вот на какой аспект. Большинство исследователей, занимающихся химизмом человеческого тела, сравнивают его минеральный состав с минеральным составом современной суши, тогда как 90% эволюции живых организмов прошло в океане. В таблице 3 сравнивается минеральный состав современного океана с минеральным составом крови некоторых животных. В этой таблице приводятся данные, полученные разными исследователями. Очевидно, на основании этих данных можно судить о том, как происходило формирование системы натрий-калиевого насоса в живых клетках.

Таблица 3 Концентрация катионов в морской воде и жидкостях организмов некоторых млекопитающих и птиц, ммоль/кг

Животное

Ткань

Концентрация элемента

Na

K

Ca

Mg

Отношение Na:K

-

Морская вода

460

10

11

55

46:1

Человек

Сыворотка

143,0

5,0

5,0

2,2

28,6:1

Крыса

Плазма

145,0

5,3

3,1

1,6

27,3:1

Собака

Сыворотка

150,5

5,3

5,3

3,7

28,4:1

Страницы: 1 2 3 4

Смотрите также

Физии обнаружили два ранее неизвестных свойства золота
Физики из Института технологий американского штата Джорджия сообщили об обнаружении двух ранее неизвестных свойств золота, которые драгоценный металл проявляет на микроскопическом уровне. В масштабе & ...

Степень превращения
Степень превращения – количество прореагировавшего реагента, отнесенное к его исходному количеству. Для простейшей реакции   ,[1] где  - концентрация на входе в реактор или в начале ...

Ртуть (Hydrargyrum), Hg
Каждому, кто хоть раз держал в руках термометр - "градусник", знакома ртуть. По своим химическим свойствам - это настоящий металл, но в отличие от других металлов жидкий при комнатной темпер ...