Ионизация электроспрея (ESI)
Периодическая система / Масс-спектрометрический метод анализа / Ионизация электроспрея (ESI)
Страница 1

Идея электроспрея, хоть и не нова, была возрождена в связи с её настоящим применением к биомолекулам. Первые эксперименты с электроспреем были проведены Чепменом в поздних 1930-х, а практическое развитие ионизации электроспрея для масс-спектрометрии было завершено Доулом в поздних 1960-х. Доул также открыл важное явление множественной зарядки молекул. Работы Фенна окончательно привели к современной технике ионизации электроспрея в масс-спектрометрии и её применению для биологических молекул.

Суть ESI заключается в следующем. Электрическое напряжение на игле приводит к большому электрическому градиенту на жидкости, который разделяет заряды на поверхности. Это вынуждает жидкость выпячиваться с иглы в форме конуса Тейлора. Верхушка конуса вытягивается в нить до тех пор, пока не достигнет предела Рэлея, при котором поверхностное натяжение и электростатическое отталкивание сравняются и сильно заряженная капля не оторвётся от нити. Капли, которые оторвались от конуса, притягиваются к входу в масс-спектрометр из-за большой разности потенциалов между иглой и входом в масс-анализатор. По мере продвижения капли к анализатору кулоновское отталкивание на поверхности превосходит поверхностное натяжение и капля «взрывается», окончательно высвобождая ионы.[3]

Ионизация электроспрея – метод, который обычно применяется для пептидов, белков, углеводов, малых олигонуклеотидов, синтетических полимеров и липидов. ESI производит газообразные заряженные молекулы прямо из жидкого раствора. Ионизация происходит при создании тонкого спрея сильно заряженных капель в присутствии электрического поля. Образец раствора распыляется из области с сильным электрическим полем на конце металлической форсунки, поддерживаемой при потенциале между 700 и 5000 В. Форсунка (или игла), к которой приложен потенциал, служит для распыления раствора в тонкий спрей заряженных капель. Использование сухого газа, нагревания или оба этих способов применяется к заряженным каплям при атмосферном давлении для испарения из них растворителя. С уменьшением размера капель возрастает плотность заряда на их поверхности. Взаимное кулоновское отталкивание между одинаковыми зарядами на этой поверхности становится настолько велико, что превосходит силы поверхностного натяжения и ионы вырываются из капли через «конус Тейлора» - рис. 1.5

. Другая возможность состоит в том, что капля взорвётся, высвобождая ионы. В любом случае свободные ионы направляются в канал через электростатические «линзы», направляясь в вакуум масс-анализатора. Так как ESI включает в себя непрерывную подачу раствора, он применим для использования совместно с ВЭЖХ или капиллярным электрофорезом.[4]

Ионизация электроспрея благоприятствует образованию единично заряженных малых молекул, но также хорошо известно образование в ходе неё многократно заряженных экземпляров больших молекул. Это важное явление, т.к. масс-спектрометр измеряет отношение массы к заряду (m/z) и поэтому многократная зарядка делает возможным наблюдать очень большие молекулы при помощи инструмента с относительно малым диапазоном масс. К счастью, программы, пригодные для всех масс-спектрометров с электроспреем, позволяют произвести вычисления молекулярной массы, необходимые для определения действительной массы многозарядных образцов. Рис. 1.6

и 1.7показывают различные заряженные состояния двух различных белков, где каждый пик в масс-спектрах может быть соотнесён с различными зарядовыми состояниями молекулярного иона. Многократная зарядка имеет другие важные преимущества в тандемной масс-спектрометрии. Одно из преимуществ состоит в том, что после фрагментации вы наблюдаете больше фрагментарных ионов от многозарядного предшественника, чем от однозарядного.

Многократная зарядка: белок с массой 10000 дальтон и его теоретический масс-спектр с зарядами до +5 показаны на рис. 1.8

. Масса белка остаётся такой же в то время, как отношение m/z меняется в зависимости от числа зарядов на белке. Ионизация белка есть обычно результат протонирования, что не только добавляет заряд, но также увеличивает массу белка на число добавленных протонов. Это действие на m/z применимо одинаково для любого механизма ионизации молекулы, образовавшего положительно или отрицательно заряженный молекулярный ион, включая присоединение или отрыв несущих заряд частиц, отличных от протона (например, Na+ и Cs+). Многократные положительные заряды наблюдаются для белков, в то время как для олигонуклеотидов типично образование отрицательных зарядов (с ESI).

Страницы: 1 2

Смотрите также

Химия и физика полимеров
...

Твердофазный синтез перрената калия
В настоящий момент большой интерес представляет уже не столько изучение свойств веществ, в которые специально были введены какие-то добавки (иногда это очень сильно меняет свойства исходного ...

Химический эксперимент по неорганической химии в системе проблемного обучения
...