Ионизация электроспрея (ESI)
Периодическая система / Масс-спектрометрический метод анализа / Ионизация электроспрея (ESI)
Страница 1

Идея электроспрея, хоть и не нова, была возрождена в связи с её настоящим применением к биомолекулам. Первые эксперименты с электроспреем были проведены Чепменом в поздних 1930-х, а практическое развитие ионизации электроспрея для масс-спектрометрии было завершено Доулом в поздних 1960-х. Доул также открыл важное явление множественной зарядки молекул. Работы Фенна окончательно привели к современной технике ионизации электроспрея в масс-спектрометрии и её применению для биологических молекул.

Суть ESI заключается в следующем. Электрическое напряжение на игле приводит к большому электрическому градиенту на жидкости, который разделяет заряды на поверхности. Это вынуждает жидкость выпячиваться с иглы в форме конуса Тейлора. Верхушка конуса вытягивается в нить до тех пор, пока не достигнет предела Рэлея, при котором поверхностное натяжение и электростатическое отталкивание сравняются и сильно заряженная капля не оторвётся от нити. Капли, которые оторвались от конуса, притягиваются к входу в масс-спектрометр из-за большой разности потенциалов между иглой и входом в масс-анализатор. По мере продвижения капли к анализатору кулоновское отталкивание на поверхности превосходит поверхностное натяжение и капля «взрывается», окончательно высвобождая ионы.[3]

Ионизация электроспрея – метод, который обычно применяется для пептидов, белков, углеводов, малых олигонуклеотидов, синтетических полимеров и липидов. ESI производит газообразные заряженные молекулы прямо из жидкого раствора. Ионизация происходит при создании тонкого спрея сильно заряженных капель в присутствии электрического поля. Образец раствора распыляется из области с сильным электрическим полем на конце металлической форсунки, поддерживаемой при потенциале между 700 и 5000 В. Форсунка (или игла), к которой приложен потенциал, служит для распыления раствора в тонкий спрей заряженных капель. Использование сухого газа, нагревания или оба этих способов применяется к заряженным каплям при атмосферном давлении для испарения из них растворителя. С уменьшением размера капель возрастает плотность заряда на их поверхности. Взаимное кулоновское отталкивание между одинаковыми зарядами на этой поверхности становится настолько велико, что превосходит силы поверхностного натяжения и ионы вырываются из капли через «конус Тейлора» - рис. 1.5

. Другая возможность состоит в том, что капля взорвётся, высвобождая ионы. В любом случае свободные ионы направляются в канал через электростатические «линзы», направляясь в вакуум масс-анализатора. Так как ESI включает в себя непрерывную подачу раствора, он применим для использования совместно с ВЭЖХ или капиллярным электрофорезом.[4]

Ионизация электроспрея благоприятствует образованию единично заряженных малых молекул, но также хорошо известно образование в ходе неё многократно заряженных экземпляров больших молекул. Это важное явление, т.к. масс-спектрометр измеряет отношение массы к заряду (m/z) и поэтому многократная зарядка делает возможным наблюдать очень большие молекулы при помощи инструмента с относительно малым диапазоном масс. К счастью, программы, пригодные для всех масс-спектрометров с электроспреем, позволяют произвести вычисления молекулярной массы, необходимые для определения действительной массы многозарядных образцов. Рис. 1.6

и 1.7показывают различные заряженные состояния двух различных белков, где каждый пик в масс-спектрах может быть соотнесён с различными зарядовыми состояниями молекулярного иона. Многократная зарядка имеет другие важные преимущества в тандемной масс-спектрометрии. Одно из преимуществ состоит в том, что после фрагментации вы наблюдаете больше фрагментарных ионов от многозарядного предшественника, чем от однозарядного.

Многократная зарядка: белок с массой 10000 дальтон и его теоретический масс-спектр с зарядами до +5 показаны на рис. 1.8

. Масса белка остаётся такой же в то время, как отношение m/z меняется в зависимости от числа зарядов на белке. Ионизация белка есть обычно результат протонирования, что не только добавляет заряд, но также увеличивает массу белка на число добавленных протонов. Это действие на m/z применимо одинаково для любого механизма ионизации молекулы, образовавшего положительно или отрицательно заряженный молекулярный ион, включая присоединение или отрыв несущих заряд частиц, отличных от протона (например, Na+ и Cs+). Многократные положительные заряды наблюдаются для белков, в то время как для олигонуклеотидов типично образование отрицательных зарядов (с ESI).

Страницы: 1 2

Смотрите также

Химическая сборка поверхности твердых тел путем молекулярного наслаивания
Получение принципиально новых характеристик материалов и изделий, особенно при создании искусственных структур, основанных на квантовых эффектах [1-6], невозможно в перспективе без создания ...

Теория симметрии молекул
Понятие симметрии играет важную роль во всех естественных науках. Свойствами симметрии обладают структуры многих молекул, ионов, образуемых ими реагирующих систем. Математической основой ...

Задание 1
1. Как одним реагентом различить водные растворы HBr, NaF, KOH, AlCl3? Напишите уравнения соответствующих реакций и укажите их признаки. 1.          Н ...