Дисперсные системыМатериалы / Дисперсные системыСтраница 9
Вязкое течение описывают уравнением Ньютона (2.4.1, а) в форме . Схема модели вязкого течения и зависимость градиента скорости смещения от напряжения приведены на рис. 2.31, б. Вязкость жидкости определяется как сtgb. В качестве механической модели идеальной вязкой ньютоновской жидкости служит поршень в цилиндре, между которыми возможно перетекание.
|
|
|
Рис. 2.31. Модель и зависимость деформации от напряжения: а – идеально упругого тела (Гука); б – идеально вязкой жидкости (Ньютона); в – идеально пластического тела (Кулона) |
Физическая модель вязкого течения связана с термически активируемым процессом перестройки взаимодействующих друг с
другом молекул. Естественно, что при действии напряжения одни связи между молекулами жидкости разрываются, а другие – образуются вновь. В истинно вязкой ньютоновской жидкости коэффициент вязкости остается постоянным от очень малых нагрузок вплоть до напряжений, при которых ламинарный режим течения переходит в турбулентный. В ряде случаев при изучении вязкого течения используют величину, обратную вязкости, которую называют текучестью.
Пластичность, или пластическое течение, не является линейной функцией напряжения. В качестве модели пластической деформации используют твердое тело, лежащее на плоскости (рис. 2.31, в) и удерживаемое на месте силами сухого трения вплоть до некоторого напряжения, способного преодолеть это сухое (кулоновское) трение. Такое течение возможно, например, в пастах пигментов, когда происходит последовательное разрушение-восстановление контактов между частицами, которые фиксируются в пространстве через некоторую прослойку жидкой фазы. В том случае, если в системе образуется кристаллическая структура при непосредственном контакте между частицами, течение начнется только после необратимого разрушения таких контактов и критическое напряжение будет соответствовать их прочности.
|
|
Рис. 2.32. Зависимость напряжения (а) и деформации (в) от времени и модель Максвелла (б) |
Конечно, в практическом приложении структурообразования
и разрушения (например, при разрушении структуры в загущенных полимерами печатных красках при перемешивании и в процессе ее нанесения на ткань и при восстановлении структуры в том рисунке, который нанесен на ткань, или при нанесении раствора полимера - шлихтующего препарата - на нити), одновременно могут проявляться и различные виды деформаций: упругая деформация, затем вязкое или пластическое течение и последующее структурирование.
Если в системе внешнее напряжение расходуется на преодоление упругой деформации и вязкого течения, то используют модель, предложенную Максвеллом, из последовательно соединенных элементов моделей Гука и Ньютона (рис. 2.32, а). В таких системах типично проявление релаксации напряжения, описываемого уравнением
P0(t) = P0exp( t/tp), (2.4.55)
где P0= E0g0 – начальное напряжение; tр= h/Е – время релаксации.
При t < tp система ведет себя как твердое тело. При t>>tp модель Максвелла соответствует жидкоподобному течению. Явление релаксации связано с тем, что для перестройки структуры при относительно невысоком напряжении требуется определенное время. Поэтому при кратковременном (мгновенном) приложении напряжения в системе возникают постепенно снижающиеся внутренние напряжения. Возможно, что снятие внутреннего напряжения будет реализовано при t®¥. Для жидкости, описываемой моделью Максвелла, характерна необратимость деформации.
Смотрите также
Тепловой эффект химической реакции
Тепловые
эффекты химических реакций необходимы для многих технических расчетов. Они
находят обширное применение во многих отраслях промышленности, а также в
военных разработках.
Целью
д ...
Смачивание, смачивающие агенты, гидрофобизация, гидрофобизирующие агенты
...
Углеводы
Углеводы на ряду с белками и липидами
являются важнейшими химическими соединениями живых организмов. В организме
углеводы выполняют важнейшие функции: энергетическую, структурную, защитн ...