Кобальт (Cobaltum), Со
Химические элементы / Кобальт (Cobaltum), Со

Кобальт - Со, химический элемент первой триады VIII группы периодической системы Менделеева; атомный номер 27, атомная масса 58,9332; тяжёлый металл серебристого цвета с розоватым отливом. В природе элемент представлен одним устойчивым изотопом 59Со; из полученных искусственно радиоактивных изотопов важнейший 60Со.

Историческая справка. Окись К. применялась в Древнем Египте, Вавилоне, Китае для окрашивания стекол и эмалей в синий цвет. Для той же цели в 16 в. в Западной Европе стали пользоваться цафрой, или сафлором, - серой землистой массой, которая получалась при обжиге некоторых руд, носивших название "кобольд". Эти руды выделяли при обжиге обильный ядовитый дым, а из продукта их обжига выплавить металл не удавалось. Средневековые рудокопы и металлурги считали это проделками мифических существ - кобольдов (от нем. Kobold - домовой, гном). В 1735 шведский химик Г. Брандт, нагревая в горне с дутьём смесь цафры с углем и флюсом, получил металл, который назвал "корольком кобольда". Вскоре это название было изменено на "кобольт", а затем на "кобальт".

Распространение в природе. Содержание К. в литосфере 1,8·10-3% по массе. В земной коре он мигрирует в магмах, горячих и холодных водах. При магматической дифференциации К. накапливается главным образом в верхней мантии: его среднее содержание в ультраосновных породах 2·10-2%. С магматическими процессами связано образование так называемых ликвационных месторождений кобальтовых руд. Концентрируясь из горячих подземных вод, К. образует гидротермальные месторождения; в них Со связан с Ni, As, S, Cu. Известно около 30 минералов К. (см. Кобальтовые руды).

В биосфере К. преимущественно рассеивается, однако на участках, где есть растения - концентраторы К., образуются кобальтовые месторождения. В верхней части земной коры наблюдается резкая дифференциация К. - в глинах и сланцах в среднем содержится 2·10-3% К., в песчаниках 3·10-5, в известняках 1·10-5. Наиболее бедны К. песчаные почвы лесных районов. В поверхностных водах К. мало, в Мировом океане его лишь 5·10-8%. Будучи слабым водным мигрантом, К. легко переходит в осадки, адсорбируясь гидроокисями марганца, глинами и др. высокодисперсными минералами.

Физические и химические свойства. При обычной температуре и до 417°C кристаллическая решётка К. гексагональная плотноупакованная (с периодами а = 2,5017 , с = 4,614 ), выше этой температуры решётка К. кубическая гранецентрированная (а = 3,5370 ). Атомный радиус 1,25 , ионные радиусы Co2+0,78 ?и Co3+0,64 . Плотность 8,9 г/см3 (при 20°C): tnл 1493? Со, tкип 3100°C. Теплоёмкость 0,44 кдж/(кг·К), или 0,1056 кал/(г·°C); теплопроводность 69,08 вт/(м·К), или 165 кал/(см·сек·?С)при 0-100 °C. Удельное электросопротивление 5,68·10-8 ом·м, или 5,68·10-6 ом·см (при 0°C). К. ферромагнитен, причём сохраняет ферромагнетизм от низких температур до точки Кюри, Q= 1121 °C (см. Ферромагнетизм). Механические свойства К. зависят от способа механической и термической обработки. Предел прочности при растяжении 500 Мн/м2 (или 50 кгс/мм2)для кованого и отожжённого К.; 242- 260 Мн/м2 для литого; 700 Мн/м2 для проволоки. Твёрдость по Бринеллю 2,8 Гн/м2 (или 280 кгс/мм2) для наклёпанного металла, 3,0 Гн/м2 для осажденного электролизом; 1,2-1,3 Гн/м2 для отожжённого.

Конфигурация внешних электронных оболочек атома К. 3d74s2. В соединениях К. проявляет переменную валентность. В простых соединениях наиболее устойчив Со (II), в комплексных - Со (III). Для Со (I) и Co (IV) получены только немногочисленные комплексные соединения. При обыкновенной температуре компактный К. стоек против действия воды и воздуха. Мелко раздробленный К., полученный восстановлением его окиси водородом при 250 °C (пирофорный К.), на воздухе самовоспламеняется, превращаясь в СоО. Компактный К. начинает окисляться на воздухе выше 300 °C; при красном калении он разлагает водяной пар: Со +? H2O = CoO + H2. С галогенами К. легко соединяется при нагревании, образуя галогениды СоХ2. При нагревании К. взаимодействует с S, Se, Р, As, Sb, С, Si, В, причём состав получающихся соединений иногда не удовлетворяет указанным выше валентным состояниям (например, Со2Р, Co2As, CoSb2, Со3С, CoSi3). В разбавленных соляной и серной кислотах К. медленно растворяется с выделением водорода и образованием соответственно хлорида CoCl2 и сульфата CoSO4. Разбавленная азотная кислота растворяет К. с выделением окислов азота и образованием нитрата Co (NO3)2. Концентрированная HNO3 пассивирует К. (см. Пассивирование металлов). Названные соли Со (II) хорошо растворимы в воде [при 25 °C 100 г воды растворяют 52,4 г CoCl2, 39,3 г CoSO4, 136,4 г. Со (NO3)2]. Едкие щёлочи осаждают из растворов солей Со2+ синюю гидроокись Со (ОН)2, которая постепенно буреет вследствие окисления кислородом воздуха до Со (ОН)3. Нагревание в кислороде при 400-500 °C переводит CoO в чёрную закись-окись Co3O4, или CoO·Co2O3 - соединение типа шпинели. Соединение того же типа CoAl2O4 или CoAl2O3 синего цвета (тенарова синь, открытая в 1804 Л. Ж. Тенаром) получается при прокаливании смеси CoO и Al2O3 при температуре около 1000 °C.

Из простых соединений Со (III) известны лишь немногие. При действии фтора на порошок Со или CoCl2 при 300-400 °C образуется коричневый фторид CoF3. Комплексные соединения Со (III) весьма устойчивы и получаются легко. Например, KNO2 осаждает из растворов солей Со (II), содержащих CH3COOH, жёлтый труднорастворимый гексанитрокобальтат (III) калия K3[Co (NO2)6]. Весьма многочисленны кобальтаммины (прежнее название кобальтиаки) - комплексные соединения Со (III), содержащие аммиак или некоторые органические амины.

Получение и применение. Минералы К. редки и не образуют значительных рудных скоплений. Главным источником промышленного получения К. служат руды никеля, содержащие К. как примесь. Переработка этих руд весьма сложна, и её способ зависит от состава руды. В конечном итоге получают раствор хлоридов К. и никеля, содержащий примеси Cu2+, Pb2+, Bi3+. Действием H2S осаждают сульфиды Cu, Pb, Bi, после чего пропусканием хлора переводят Fe (II) в Fe (lll) и добавлением СаСО3 осаждают Fe (OH)3 и CaHAsO4. От никеля К. отделяют по реакции: 2CoCl2+NaCIO+4NaOH+H2O = 2Co (OH)3¯+5NaCI. Почти весь никель остаётся в растворе. Чёрный осадок Со (ОН)3 прокаливают для удаления воды; полученный окисел Co3O4 восстанавливают водородом или углеродом. Металлический К., содержащий до 2-3% примесей (Ni, Fе, Cu и др.), может быть очищен электролизом.

К. применяется главным образом в виде сплавов; таковы кобальтовые сплавы, а также сплавы на основе др. металлов, где К. служит легирующим элементом. Сплавы К. используют в качестве жаропрочных и жаростойких материалов, при изготовлении постоянных магнитов, режущего инструмента и др. Порошкообразный К., а также Co3O4 служат катализаторами. Фторид CoF3 применяется как сильный фторирующий агент, тенарова синь и особенно силикат К. и калия (см. Смальта) - как краски в керамической и стекольной промышленности. Соли К. применяют в сельском хозяйстве как микроудобрения, а также для подкормки животных.
 

      Смотрите также

      Химики создали молекулу, способную удалять из раствора отрицательно заряженные ионы
      Химики создали органическую молекулу, способную связывать отрицательно заряженные ионы растворенных веществ. Это позволяет очищать растворы от ионов, например, хлора и фтора. Агенты (вещества), спос ...

      Бор (Borum), В
      Бор - химический элемент III группы периодической системы Менделеева, атомный номер 5, атомная масса 10,811; кристаллы серовато-чёрного цвета (очень чистый Б. бесцветен). Природный Б. состоит из двух ...

      Методы синтеза ScF3, HfF4 и SnF2
      ...